基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的故障预测方法难以对不同工况下的滚动轴承故障进行有效预测,为此,提出了一种基于BP神经网络和DS证据理论的滚动轴承故障预测方法.首先采用擅长于处理非平稳信号的小波包分解对多个传感器采集的原始振动数据进行特征分析,然后对BP神经网络的结构和参数进行优化设置并使用多个BP神经网络分别进行故障预测模型训练,最后利用DS证据理论将多个神经网络得到的预测结果进行融合并输出最终预测结果.实验结果表明,该方法能对不同工况下的滚动轴承故障进行有效预测,故障预测平均准确率达96.37%;且与相关文献提出的方法相比,所提出的方法得到的滚动轴承故障预测准确率有所提升.
推荐文章
基于卷积神经网络的滚动轴承故障诊断方法
深度学习
卷积神经网络
特征自动提取
轴承故障诊断
基于概率神经网络的滚动轴承故障诊断
PNN网络
BP神经网络
故障诊断
滚动轴承
基于小波包和改进BP神经网络的滚动轴承故障诊断方法
小波包
BP神经网络
Levenberg?Marquardt
滚动轴承
故障诊断
基于AR模型和径向基神经网络的滚动轴承故障诊断
滚动轴承
振动信号
AR模型
RBF神经网络
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于神经网络和证据理论的滚动轴承故障预测方法
来源期刊 湖南工业大学学报 学科 工学
关键词 滚动轴承 故障预测 BP神经网络 DS证据理论 小波包分解
年,卷(期) 2020,(4) 所属期刊栏目 应用技术
研究方向 页码范围 35-41
页数 7页 分类号 TH133.33
字数 5582字 语种 中文
DOI 10.3969/j.issn.1673-9833.2020.04.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李长云 湖南工业大学计算机学院 130 747 12.0 21.0
5 万烂军 湖南工业大学计算机学院 8 5 2.0 2.0
9 李泓洋 湖南工业大学计算机学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (141)
共引文献  (153)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1932(1)
  • 参考文献(0)
  • 二级参考文献(1)
1946(1)
  • 参考文献(0)
  • 二级参考文献(1)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(4)
  • 参考文献(0)
  • 二级参考文献(4)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(7)
  • 参考文献(0)
  • 二级参考文献(7)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(13)
  • 参考文献(0)
  • 二级参考文献(13)
2006(10)
  • 参考文献(0)
  • 二级参考文献(10)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(9)
  • 参考文献(0)
  • 二级参考文献(9)
2010(10)
  • 参考文献(0)
  • 二级参考文献(10)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(14)
  • 参考文献(0)
  • 二级参考文献(14)
2013(7)
  • 参考文献(1)
  • 二级参考文献(6)
2014(8)
  • 参考文献(1)
  • 二级参考文献(7)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(10)
  • 参考文献(2)
  • 二级参考文献(8)
2017(5)
  • 参考文献(2)
  • 二级参考文献(3)
2018(4)
  • 参考文献(2)
  • 二级参考文献(2)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
滚动轴承
故障预测
BP神经网络
DS证据理论
小波包分解
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
湖南工业大学学报
双月刊
1673-9833
43-1468/T
大16开
湖南省株洲市天元区泰山路88号
1987
chi
出版文献量(篇)
3955
总下载数(次)
6
总被引数(次)
15502
论文1v1指导