基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Overstress in the surrounding rock of the roadway is a key reason that causes failures of deep roadways. Destressing blasting is one of the promising techniques that could improve the supporting quality. If the depth of the pressure relief blast hole is too shallow, the surrounding rock of the roadway will be broken or even collapsed. If the pressure relief blast hole is too deep, the pressure relief area will be located in the deep part of the surrounding rock of the roadway, which cannot achieve the purpose of releasing the stress in the shallow part of the surrounding rock and cause waste of the blast hole. The width or range of the pressure relief area should just fall in the high stress area of the surrounding rock of the roadway, so the pressure relief blast hole should have a reasonable depth. In order to quantitatively describe the relationship between borehole depth and the width of the stress relief zone, numerical simulations were carried out in ANSYS according to different borehole depths. The results show that the optimal destressing effect is achieved when borehole depth is 4 m. Peak stress of and is significantly reduced by 30.51% and 49.07% after blasting. Meanwhile, the high-stress area shifts about 4.8 m from the roadside to the depth of surrounding rock, thus a 3.8 m wide stress relief zone is formed around the roadside, thus, the aim of quantizing the effects of destress blasting is achieved.
推荐文章
Seasonal shifts in the solute ion ratios of vadose zone rock moisture from the Eel River Critical Zo
Vadose zone
Solute ion ratios
Critical Zone Observatory
Seasonal solute dynamics
The partitioning patterns of nutrients between pods and seeds of Zanthoxylum fruits impacted by envi
Partitioning pattern
Nutritional quality
C:N ratio
Zanthoxylum fruits
Mean annual temperature
Mean annual precipitation
In-situ nitrogen fate in the vadose zone of different soil types and its implications for groundwate
Vadose zone
Silty-loam
Silty-clay-loam
Nitrogen transformation
Groundwater vulnerability
Stable isotopes
Characteristics of CO2 in unsaturated zone (~90 m) of loess tableland, Northwest China
Unsaturated zone
Soil CO2
Carbon stock in deep loess
Quantitative paleoclimate reconstruction
Loess
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Numerical Simulation of the Relationship between the Width of Destressed Zone and Blasthole Depth
来源期刊 工程(英文)(1947-3931) 学科 工学
关键词 Rock BURST Deep ROADWAY Supporting WIDTH of Stress RELIEF ZONE Destress BLASTING Numerical Simulation
年,卷(期) 2020,(4) 所属期刊栏目
研究方向 页码范围 269-279
页数 11页 分类号 TD2
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Rock
BURST
Deep
ROADWAY
Supporting
WIDTH
of
Stress
RELIEF
ZONE
Destress
BLASTING
Numerical
Simulation
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
工程(英文)(1947-3931)
月刊
1947-3931
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
367
总下载数(次)
1
总被引数(次)
0
期刊文献
相关文献
推荐文献
论文1v1指导