基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
钼靶检查是当前临床诊断乳腺肿瘤的常规手段,患者痛苦相对较小、简便易行、分辨率高、可重复性好.为了提高诊断效率,减小误诊风险,针对乳腺钼靶图像开发基于人工智能的计算机辅助诊断系统(computer-aided diagnosis,CAD)显得尤为重要.传统的分类方法需要使用大量的手工特征,而深度学习能够自动从数据中学习特征,避免了传统算法中人工设计、提取特征的复杂性和局限性.我们从感兴趣区域和全图两个方面对近年来基于深度学习的乳腺钼靶图像分类方法研究进展予以综述和展望.调研发现深度学习在乳腺钼靶图像分类方面展示了不错的效果,其中基于深度卷积神经网络的分类方法已经成为当下的热门技术.
推荐文章
基于深度学习的医学图像分割研究进展
医学图像分割
深度学习
卷积神经网络
综述
基于深度学习的癌症计算机辅助分类诊断研究进展
深度学习
肺癌
乳腺癌
计算机辅助分类诊断
医学影像
基于深度学习的多模态医学图像融合方法研究进展
医学图像
图像融合
深度学习
卷积神经网络
深度信念网络
一种基于小波的钼靶X线图像增强方法
钙化点
小波
反锐化掩模
对比度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的乳腺钼靶图像分类方法研究进展
来源期刊 生物医学工程研究 学科 医学
关键词 乳腺肿瘤 钼靶 计算机辅助诊断系统 图像分类 深度学习 卷积神经网络
年,卷(期) 2020,(2) 所属期刊栏目 综述
研究方向 页码范围 208-213
页数 6页 分类号 R318
字数 5651字 语种 中文
DOI 10.19529/j.cnki.1672-6278.2020.02.19
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (55)
共引文献  (657)
参考文献  (20)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1900(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(7)
  • 参考文献(1)
  • 二级参考文献(6)
2013(9)
  • 参考文献(0)
  • 二级参考文献(9)
2014(8)
  • 参考文献(0)
  • 二级参考文献(8)
2015(13)
  • 参考文献(2)
  • 二级参考文献(11)
2016(6)
  • 参考文献(2)
  • 二级参考文献(4)
2017(11)
  • 参考文献(8)
  • 二级参考文献(3)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
乳腺肿瘤
钼靶
计算机辅助诊断系统
图像分类
深度学习
卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
生物医学工程研究
季刊
1672-6278
37-1413/R
大16开
山东省济南市解放路11号
1982
chi
出版文献量(篇)
1657
总下载数(次)
8
总被引数(次)
7283
论文1v1指导