原文服务方: 微电子学与计算机       
摘要:
针对粒子群优化算法容易陷入局部最优且K-means算法受聚类数及初始聚类中心的选取影响较大,提出了一种改进的简化均值粒子群K-means优化聚类算法(ISMPSO-AKM).一方面,在简化粒子群算法的基础上,加入邻域最优粒子,由个体最优位置、全局最优位置及邻域最优位置线性组合改进位置公式.另一方面,构造一种基于余弦函数和对数函数的惯性权重,实现对惯性权重的动态调整.此外,引入AKM聚类算法确定聚类数,动态获取初始中心,进一步提高算法的准确性.仿真实验表明,改进的ISMPSO-AKM算法具有更快的收敛速度,更高的求解精度及更稳定的聚类结果.
推荐文章
结合双粒子群和K-means的混合文本聚类算法
双粒子群
自调整惯性权值
信息交流
K-means算法
文本聚类
一种改进的K-means聚类算法
聚类分析
K-means算法
离群点数据
一种改进K-means聚类的FCMM算法
K-means聚类
萤火虫
最大最小距离
Tent映射
混沌搜索
一种分裂式的k-means聚类算法
聚类
数据预处理
初始聚类中心
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种改进的简化均值粒子群K-means聚类算法
来源期刊 微电子学与计算机 学科
关键词 粒子群优化算法 简化粒子群 邻域最优粒子 K-means聚类 聚类数 初始聚类中心
年,卷(期) 2020,(5) 所属期刊栏目
研究方向 页码范围 69-74
页数 6页 分类号 TP18|TP391.41
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 靳雁霞 中北大学大数据学院 46 160 7.0 10.0
2 齐欣 中北大学大数据学院 3 1 1.0 1.0
3 张晋瑞 中北大学大数据学院 5 1 1.0 1.0
4 程琦甫 中北大学大数据学院 5 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (59)
共引文献  (298)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(9)
  • 参考文献(0)
  • 二级参考文献(9)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(8)
  • 参考文献(2)
  • 二级参考文献(6)
2016(4)
  • 参考文献(0)
  • 二级参考文献(4)
2017(4)
  • 参考文献(3)
  • 二级参考文献(1)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
粒子群优化算法
简化粒子群
邻域最优粒子
K-means聚类
聚类数
初始聚类中心
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
总被引数(次)
59060
论文1v1指导