基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Purpose: Our work seeks to overcome data quality issues related to incomplete author affiliation data in bibliographic records in order to support accurate and reliable measurement of international research collaboration(IRC).Design/methodology/approch: We propose, implement, and evaluate a method that leverages the Web-based knowledge graph Wikidata to resolve publication affiliation data to particular countries. The method is tested with general and domain-specific data sets.Findings: Our evaluation covers the magnitude of improvement, accuracy, and consistency. Results suggest the method is beneficial, reliable, and consistent, and thus a viable and improved approach to measuring IRC.Research limitations: Though our evaluation suggests the method works with both general and domain-specific bibliographic data sets, it may perform differently with data sets not tested here. Further limitations stem from the use of the R programming language and R libraries for country identification as well as imbalanced data coverage and quality in Wikidata that may also change over time.Practical implications: The new method helps to increase the accuracy in IRC studies and provides a basis for further development into a general tool that enriches bibliographic data using the Wikidata knowledge graph.Originality: This is the first attempt to enrich bibliographic data using a peer-produced, Webbased knowledge graph like Wikidata.
推荐文章
A re-assessment of nickel-doping method in iron isotope analysis on rock samples using multi-collect
Fe isotope
Ni-doping
Stable isotope
Precision and accuracy
Mass bias correction
Pseudo-high mass resolution
基于语义的Data Cube数字水印技术
数字水印
语义
数据立方体
版权
Data Transfer Object模式探讨
Data Transfer Object 三层应用 DataSet
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Novel Method for Resolving and Completing Authors' Country Affiliation Data in Bibliographic Records
来源期刊 数据与情报科学学报:英文版 学科 工学
关键词 International research collaboration measurement Bibliographic data Country identification Knowledge graphs Wikidata Open data
年,卷(期) 2020,(3) 所属期刊栏目
研究方向 页码范围 97-115
页数 19页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
International
research
collaboration
measurement
Bibliographic
data
Country
identification
Knowledge
graphs
Wikidata
Open
data
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据与情报科学学报:英文版
季刊
2096-157X
10-1394/G2
北京市中关村北四环西路33号
82-563
出版文献量(篇)
445
总下载数(次)
1
总被引数(次)
0
论文1v1指导