基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Ultrahyperfunctions (UHF) are the generalization and extension to the complex plane of Schwartz’ tempered distributions. This effort is an application to Einstein’s gravity (EG) of the mathematical theory of convolution of Ultrahyperfunctions developed by Bollini et al. [1] [2] [3] [4]. A simplified version of these results was given in [5] and, based on them;a Quantum Field Theory (QFT) of EG [6] was obtained. Any kind of infinities is avoided by recourse to UHF. We will quantize EG by appealing to the most general quantization approach, the Schwinger-Feynman variational principle, which is more appropriate and rigorous that the popular functional integral method (FIM). FIM is not applicable here because our Lagrangian contains derivative couplings. We follow works by Suraj N. Gupta and Richard P. Feynman so as to undertake the construction of an EG-QFT. We explicitly use the Einstein Lagrangian as elaborated by Gupta [7], but choose a new constraint for the ensuing theory. In this way, we avoid the problem of lack of unitarity for the S matrix that afflicts the procedures of Gupta and Feynman. Simultaneously, we significantly simplify the handling of constraints, which eliminates the need to appeal to ghosts for guarantying unitarity of the theory. Our approach is obviously non-renormalizable. However, this inconvenience can be overcome by appealing to the mathematical theory developed by Bollini et al. [1] [2] [3] [4] [5]. Such developments were founded in the works of Alexander Grothendieck [8] and in the theory of Ultradistributions of Jose Sebastiao e Silva [9] (also known as Ultrahyperfunctions). Based on these works, an edifice has been constructed along two decades that are able to quantize non-renormalizable Field Theories (FT). Here we specialize this mathematical theory to discuss EG-QFT. Because we are using a Gupta-Feynman inspired EG Lagrangian, we are able to evade the intricacies of Yang-Mills theories.
推荐文章
Forest carbon storage in Guizhou Province based on field measurement dataset
Forest carbon storage
Field measurement dataset
Karst landform
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
双区次临界系统的单群Feynman-α方程的解析解
中子噪声分析
Feynman-α方法
次临界度
α本征值
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Generalization via Ultrahyperfunctions of a Gupta-Feynman Based Quantum Field Theory of Einstein’s Gravity
来源期刊 现代物理(英文) 学科 物理学
关键词 Quantum Field Theory EINSTEIN GRAVITY Non-Renormalizable Theories UNITARITY
年,卷(期) 2020,(3) 所属期刊栏目
研究方向 页码范围 378-394
页数 17页 分类号 O41
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Quantum
Field
Theory
EINSTEIN
GRAVITY
Non-Renormalizable
Theories
UNITARITY
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代物理(英文)
月刊
2153-1196
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1826
总下载数(次)
0
总被引数(次)
0
论文1v1指导