Silicon-based material is considered to be one of the most promising anodes for the next-generation lithium-ion batteries (LIBs) due to its rich sources,nontoxicity,low cost and high theoretical specific capacity.However,it cannot maintain a stable electrode structure during repeated charge/discharge cycles,and therefore long cycling life is difficult to be achieved.To address this problem,herein a simple and efficient method is developed for the fabrication of an integrated composite anode consisting of SiO-based active material and current collector,which exhibits a core-shell structure with nitrogen-doped carbon coating on SiO/P micro-particles.Without binder and conductive agent,the volume expansion of SiO active material in the integrated composite anode is suppressed to prevent its pulverization.At a current density of 500 mA·g-1,this integrated composite anode exhibits a reversible specific capacity of 458 mA · h·g-1 after 200 cycles.Furthermore,superior rate performance and cycling stability are also achieved.This work illustrates a potential method for the fabrication of integrated composite anodes with superior electrochemical properties for high-performance LIBs.