基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Background::Gliomas are the most common primary malignant brain tumors and have a poor prognosis. Early detection of gliomas is crucial to improve patient outcomes. Urine accumulates systematic body changes and thus serves as an excellent early biomarker source.Methods::At the biomarker discovery phase, we performed a self-controlled proteomics analysis by comparing urine samples collected from five glioma patients at the time of tumor diagnosis and after surgical removal of the tumor. At the biomarker validation phase, we further validated some promising proteins using parallel reaction monitoring (PRM)-based targeted proteomics in another cohort, including glioma, meningioma, and moyamoya disease patients as well as healthy controls.Results::Using label-free proteome quantitation (LFQ), we identified twenty-seven urinary proteins that were significantly changed after tumor resection, many of which have been previously associated with gliomas. The functions of these proteins were significantly enriched in the autophagy and angiogenesis, which are associated with glioma development. After targeted proteomics validation, we identified a biomarker panel (AACT, TSP4, MDHM, CALR, LEG1, and AHSG) with an area under the curve (AUC) value of 0.958 for the detection of gliomas. Interestingly, AACT, LEG1, and AHSG are also potential cerebrospinal fluid or blood biomarkers of gliomas.Conclusions::Using LFQ and PRM proteome quantification, we identified candidate urinary protein biomarkers with the potential to detect gliomas. This study will also provide clues for future biomarker studies involving brain diseases.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Determination of brominated diphenyl ethers in atmospheric particulate matter using selective pressu
Brominated diphenyl ethers
Atmospheric particulate matters
Selective pressurised liquid extraction
Gas chromatography-mass spectrometry
快速mass函数收敛算法
归类判决
DSmT
mass函数
基于目标多特征的mass函数确定方法
目标多特征
mass函数
模糊理论
隶属函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Urinary biomarker discovery in gliomas using mass spectrometry-based clinical proteomics
来源期刊 中华神经外科杂志(英文) 学科
关键词 Glioma Biomarkers Urine Proteomics
年,卷(期) 2020,(2) 所属期刊栏目 Research
研究方向 页码范围 82-91
页数 10页 分类号
字数 语种 中文
DOI 10.1186/s41016-020-00190-5
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (87)
共引文献  (9)
参考文献  (40)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(8)
  • 参考文献(2)
  • 二级参考文献(6)
2009(7)
  • 参考文献(3)
  • 二级参考文献(4)
2010(14)
  • 参考文献(3)
  • 二级参考文献(11)
2011(8)
  • 参考文献(1)
  • 二级参考文献(7)
2012(8)
  • 参考文献(2)
  • 二级参考文献(6)
2013(11)
  • 参考文献(2)
  • 二级参考文献(9)
2014(24)
  • 参考文献(7)
  • 二级参考文献(17)
2015(13)
  • 参考文献(6)
  • 二级参考文献(7)
2016(4)
  • 参考文献(3)
  • 二级参考文献(1)
2017(5)
  • 参考文献(5)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Glioma
Biomarkers
Urine
Proteomics
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中华神经外科杂志(英文)
季刊
2095-9370
10-1275/R
北京市丰台区南四环西路119号B区613室
2014
eng
出版文献量(篇)
235
总下载数(次)
0
总被引数(次)
24
论文1v1指导