基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
单幅图像的目标检测和物体姿态估计一直是计算机视觉领域中非常重要的研究内容.利用卷积神经网络对单幅室内场景图像进行研究分析,提出了一种基于卷积神经网络的单幅图像室内物体姿态估计算法.该算法采用直接分类预测的方法来实现物体的姿态估计.通过改进Faster-RCNN 网络结构,利用室内场景数据集SUNRGB-D训练网络,实现端到端单幅室内图像目标检测和姿态估计.实验结果表明,该算法目标检测平均准确度为70%,姿态估计结果中平移估计准确度为28%,旋转角度估计准确度为30%.
推荐文章
基于伪三维卷积神经网络的手势姿态估计
手势姿态估计
伪三维卷积神经网络
三维特征
深度图像
深度学习
基于多通道卷积神经网络的单幅图像深度估计
卷积神经网络
单幅图像
深度估计
傅里叶分析
基于深度卷积神经网络的图像检索算法研究
图像检索
卷积神经网络
特征提取
深度学习
基于卷积神经网络的植物图像分类方法研究
卷积神经网络
图像特征
图像分类
全卷积网络
植物图像
数据集
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的单幅图像室内物体姿态估计
来源期刊 杭州师范大学学报(自然科学版) 学科 工学
关键词 姿态估计 室内场景 目标检测 卷积神经网络
年,卷(期) 2020,(1) 所属期刊栏目 物理与计算机科学
研究方向 页码范围 105-112
页数 8页 分类号 TP389.1
字数 3195字 语种 中文
DOI 10.12191/j.issn.1674-232X.2020.01.017
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 姚争为 杭州师范大学国际服务工程学院 22 148 6.0 11.0
2 刘复昌 杭州师范大学国际服务工程学院 7 19 3.0 4.0
3 方鹏飞 杭州师范大学国际服务工程学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (1)
同被引文献  (2)
二级引证文献  (0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
姿态估计
室内场景
目标检测
卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
杭州师范大学学报(自然科学版)
双月刊
1674-232X
33-1348/N
大16开
杭州市下沙高教园区学林街16号
1979
chi
出版文献量(篇)
2397
总下载数(次)
7
总被引数(次)
7649
论文1v1指导