原文服务方: 物联网技术       
摘要:
为了解决传统卷积神经网络(CNN)由于手势背景复杂和手势姿态多样性而导致准确率不高的问题,提出一种改进卷积神经网络方法对手势进行分类识别.首先对手势图像做基于肤色阈值的手势分割处理,然后用Dropout优化后的卷积神经网络对手势图像特征进行提取和分类识别.在不同环境下对手势识别并与传统方法进行对比实验.实验表明,改进CNN识别准确率为96.92%,传统CNN识别准确率为93.58%,证明改进CNN识别准确率较传统CNN有一定提高.
推荐文章
基于Leap Motion和卷积神经网络的手势识别
手势识别
高精度
Leap Motion
灰度处理
卷积神经网络
深度学习
基于多尺度卷积神经网络模型的手势图像识别
卷积神经网络
卷积核
深度学习
特征提取
手势识别
二值化
基于改进卷积神经网络的 RFID 单标签非接触手势识别研究
非接触
单标签
细粒度识别
神经网络
马尔可夫变迁场
基于改进的卷积神经网络的人脸识别算法
人脸识别
深度学习
卷积神经网络
Dropout技术
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进卷积神经网络的手势识别
来源期刊 物联网技术 学科
关键词 改进卷积神经网络 手势识别 准确率 图像处理 过拟合 Dropout
年,卷(期) 2020,(7) 所属期刊栏目 全面感知
研究方向 页码范围 26-27,30
页数 3页 分类号 TP39
字数 语种 中文
DOI 10.16667/j.issn.2095-1302.2020.07.008
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 宋京 河北工程大学机械与装备工程学院 2 0 0.0 0.0
2 段惠斌 河北工程大学机械与装备工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (105)
共引文献  (464)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1943(1)
  • 参考文献(0)
  • 二级参考文献(1)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(9)
  • 参考文献(0)
  • 二级参考文献(9)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(11)
  • 参考文献(0)
  • 二级参考文献(11)
2015(22)
  • 参考文献(0)
  • 二级参考文献(22)
2016(15)
  • 参考文献(0)
  • 二级参考文献(15)
2017(17)
  • 参考文献(2)
  • 二级参考文献(15)
2018(8)
  • 参考文献(3)
  • 二级参考文献(5)
2019(5)
  • 参考文献(4)
  • 二级参考文献(1)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
改进卷积神经网络
手势识别
准确率
图像处理
过拟合
Dropout
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
物联网技术
月刊
2095-1302
61-1483/TP
16开
2011-01-01
chi
出版文献量(篇)
5103
总下载数(次)
0
总被引数(次)
13151
论文1v1指导