原文服务方: 中国医学物理学杂志       
摘要:
结合深度学习理论,将卷积神经网络算法运用到细胞识别上.相比传统的细胞识别算法,基于卷积神经网络的细胞识别使流程变得简单,同时也使得细胞的识别率更高.与多层神经网络、支持向量机及决策树等机器学习算法相比,卷积神经网络算法由于本身网络的复杂度以及训练集的大样本量,其深度远大于传统的机器学习算法,能较这些手工提取特征的方法更好地表达特征和区分细胞,最终取得的分类效果也要优于前者.研究结果表明卷积神经网络算法能较好地用于细胞识别.
推荐文章
基于改进卷积神经网络的手势识别
改进卷积神经网络
手势识别
准确率
图像处理
过拟合
Dropout
基于卷积神经网络的车牌识别
卷积神经网络
车牌识别
模型训练
权值共享
基于稀疏卷积神经网络的考生识别算法
考生识别
卷积神经网络
人脸识别
身份验证
多通道输入
方法比
基于Leap Motion和卷积神经网络的手势识别
手势识别
高精度
Leap Motion
灰度处理
卷积神经网络
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的细胞识别
来源期刊 中国医学物理学杂志 学科
关键词 细胞识别 卷积神经网络 深度学习 池化层
年,卷(期) 2017,(1) 所属期刊栏目 医学信号处理与医学仪器
研究方向 页码范围 53-57
页数 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1005-202X.2017.01.011
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (28)
共引文献  (539)
参考文献  (8)
节点文献
引证文献  (12)
同被引文献  (21)
二级引证文献  (10)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(3)
  • 参考文献(1)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(1)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(2)
  • 二级参考文献(0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(4)
  • 参考文献(2)
  • 二级参考文献(2)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(6)
  • 引证文献(6)
  • 二级引证文献(0)
2019(8)
  • 引证文献(1)
  • 二级引证文献(7)
2020(6)
  • 引证文献(3)
  • 二级引证文献(3)
研究主题发展历程
节点文献
细胞识别
卷积神经网络
深度学习
池化层
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国医学物理学杂志
月刊
1005-202X
44-1351/R
16开
1983-01-01
chi
出版文献量(篇)
4079
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导