原文服务方: 现代电子技术       
摘要:
在手掌静脉图像采集的过程中易受手掌摆放姿势、光源条件等外界因素的影响,造成识别准确度欠佳.为了提高手掌静脉图像识别的精准度和鲁棒性,提出一种基于改进AlexNet深度卷积神经网络的手掌静脉识别方法.该方法首先通过图像分割、指根关键点定位、感兴趣区域图像提取等三个阶段对采集的手掌静脉图像进行预处理;其次,针对人体手掌静脉识别的应用场景,通过适当调整经典的AlexNet卷积神经网络的结构并对卷积层的输出进行批标准化操作,同时,将深度学习理论中的注意力机制应用到该网络中,进而优化AlexNet神经网络,使用优化后的AlexNet神经网络对预处理后的图像自动进行特征提取、分类和识别;最后,在公开的Polyu和CASIA多光谱掌纹数据集上进行大量的实验,达到的最佳识别率分别为99.93%和99.51%,实验验证了所提方法的有效性.
推荐文章
基于改进的卷积神经网络的人脸识别算法
人脸识别
深度学习
卷积神经网络
Dropout技术
基于改进卷积神经网络的手势识别
改进卷积神经网络
手势识别
准确率
图像处理
过拟合
Dropout
基于稀疏卷积神经网络的考生识别算法
考生识别
卷积神经网络
人脸识别
身份验证
多通道输入
方法比
基于双流卷积神经网络的改进人体行为识别算法
人体行为识别
深度学习
双流卷积神经网络
模型融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进AlexNet卷积神经网络的手掌静脉识别算法研究
来源期刊 现代电子技术 学科
关键词 手掌静脉识别 AlexNet神经网络优化 图像特征提取 图像预处理 注意力机制应用 有效性验证
年,卷(期) 2020,(7) 所属期刊栏目 信号分析与图像处理
研究方向 页码范围 52-56
页数 5页 分类号 TN911.73-34|TP391.4
字数 语种 中文
DOI 10.16652/j.issn.1004-373x.2020.07.013
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 雷印杰 四川大学电子信息学院智能控制研究所 34 120 6.0 9.0
2 林坤 四川大学电子信息学院智能控制研究所 5 8 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (26)
共引文献  (13)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(8)
  • 参考文献(1)
  • 二级参考文献(7)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(2)
  • 参考文献(1)
  • 二级参考文献(1)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
手掌静脉识别
AlexNet神经网络优化
图像特征提取
图像预处理
注意力机制应用
有效性验证
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
总被引数(次)
135074
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导