基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
With the development of network services and location-based systems,many mobile applications begin to use users’geographical location to provide better services.In terms of social networks,geographical location is actively shared by users.In some applications with recommendation services,before the geographical location recommendation is provided,the authors have to obtain user’s permission.This kind of social network integrated with geographical location information is called location-based social networks(abbreviate for LBSNs).In the LBSN,each user has location information when he or she checked in hotels or feature spots.Based on this information,they can identify user’s trajectory of movement behaviour and activity patterns.In general,if there is friendship between two users,their trajectories in reality are likely to be similar.In this study,according to user’s geographical location information over a period of time,they explore whether there exists friendly relationship between two users based on trajectory similarity and the structure theory of graphs.In particular,they propose a new factor function and a factor graph model based on user’s geographical location to predict the friendship between two users in the real LBSN.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Rapid estimation of soil heavy metal nickel content based on optimized screening of near-infrared sp
Heavy metal
Band extraction
Partial least squares regression
Extreme learning machine
Near infrared spectroscopy
一种基于本体的有趣Co-location模式的交互式挖掘算法
空间co-location模式挖掘
本体
二次挖掘
交互式
过滤
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Friendship prediction model based on factor graphs integrating geographical location
来源期刊 智能技术学报 学科 工学
关键词 LBS SERVICES PREDICTION
年,卷(期) 2020,(3) 所属期刊栏目
研究方向 页码范围 193-199
页数 7页 分类号 TN9
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
LBS
SERVICES
PREDICTION
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能技术学报
季刊
2468-2322
重庆市巴南区红光大道69号
出版文献量(篇)
142
总下载数(次)
4
总被引数(次)
0
论文1v1指导