基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Emotion is such a unique power of human trial that plays a vital role in distinguishing human civilization from others. Voice is one of the most important media of expressing emotion. We can identify many types of emotions by talking or listening to voices. This is what we know as a voice signal. Just as the way people talk is different, so is the way they express emotions. By looking or hearing a person’s way of speaking, we can easily guess his/her personality and instantaneous emotions. People’s emotion and feelings are expressed in different ways. It is through the expression of emotions and feelings that people fully express his thoughts. Happiness, sadness, and anger are the main medium of expression way of different human emotions. To express these emotions, people use body postures, facial expressions and vocalizations. Though people use a variety of means to express emotions and feelings, the easiest and most complete way to express emotion and feelings is voice signal. The subject of our study is whether we can identify the right human emotion by examining the human voice signal. By analyzing the voice signal through wavelet, we have tried to show whether the mean frequency, maximum frequency and <em>L<sub>p</sub></em> values conform to a pattern according to its different sensory types. Moreover, the technique applied here is to develop a concept using MATLAB programming, which will compare the mean frequency, maximum frequency and <em>L<sub>p</sub></em> norm to find relation and detect emotion by analyzing different voices.
推荐文章
Determination of brominated diphenyl ethers in atmospheric particulate matter using selective pressu
Brominated diphenyl ethers
Atmospheric particulate matters
Selective pressurised liquid extraction
Gas chromatography-mass spectrometry
Detection of tyrosine, trace metals and nutrients in cow dung: the environmental significance in soi
Cow dung
Excitation–emission matrix (EEM) spectroscopy
Parallel factor (PARAFAC) modelling
Tyrosine
Trace metals
基于WAVELET-GARCH组合方法的中国保险深度分析
小波
趋势项
广义自回归条件异方差
预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Emotion Detection by Analyzing Voice Signal Using Wavelet
来源期刊 美国计算数学期刊(英文) 学科 文学
关键词 MATLAB Programming WAVELET Haar Decomposition Voice Signal Mean Frequency Maximum Frequency Lp Norm
年,卷(期) 2020,(4) 所属期刊栏目
研究方向 页码范围 485-502
页数 18页 分类号 H31
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
MATLAB
Programming
WAVELET
Haar
Decomposition
Voice
Signal
Mean
Frequency
Maximum
Frequency
Lp
Norm
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
美国计算数学期刊(英文)
季刊
2161-1203
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
355
总下载数(次)
1
总被引数(次)
0
论文1v1指导