基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Haze is a very common phenomenon that degrades or reduces visibility. It causes various problems where high-quality images are required such as traffic and security monitoring. So haze removal from scenes is an immediate demand for clear vision. Recently, in addition to the conventional dehazing mechanisms, different types of deep generative adversarial networks (GAN) are applied to suppress the noise and improve the dehazing performance. But it is unclear how these algorithms would perform on hazy images acquired “in the wild” and how we could gauge the progress in the field. To bridge this gap, this presents a comprehensive study on three single image dehazing state-of-the-art GAN models, such as AOD-Net, cGAN, and DHSGAN. We have experimented using benchmark dataset consisting of both synthetic and real-world hazy images. The obtained results are evaluated both quantitatively and qualitatively. Among these techniques, the DHSGAN gives the best performance.
推荐文章
基于Titan Image软件的QuickBird影像融合
Titan Image
QuickBird
影像融合
质量评价
14位Single-slope ADC行为级建模与仿真
单斜模/数转换器
行为级建模
红外焦平面
Simulink
集成电路设计
功能仿真
基于改进的Single-pass算法的新闻热点的发现
新闻热点
话题发现
聚类算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Single Image Dehazing: An Analysis on Generative Adversarial Network
来源期刊 电脑和通信(英文) 学科 工学
关键词 Dehazing DEEP Leaning Convulutional NEURAL NETWORK (CNN) GENERATIVE Adversarial Networks (GAN)
年,卷(期) 2020,(4) 所属期刊栏目
研究方向 页码范围 127-137
页数 11页 分类号 TN3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Dehazing
DEEP
Leaning
Convulutional
NEURAL
NETWORK
(CNN)
GENERATIVE
Adversarial
Networks
(GAN)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑和通信(英文)
月刊
2327-5219
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
783
总下载数(次)
0
总被引数(次)
0
论文1v1指导