基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
This work extends to third-order previously published work on developing the adjoint sensitivity and uncertainty analysis of the numerical model of a <u>p</u>oly<u>e</u>thylene-<u>r</u>eflected <u>p</u>lutonium (acronym: PERP) OECD/NEA reactor physics benchmark. The PERP benchmark comprises 21,976 imprecisely known (uncertain) model parameters. Previous works have used the adjoint sensitivity analysis methodology to compute exactly and efficiently all of the 21,976 first-order and (21,976)<sup>2</sup> second-order sensitivities of the PERP benchmark’s leakage response to all of the benchmark’s uncertain parameters, showing that the largest and most consequential 1<sup>st</sup>- and 2<sup>nd</sup>-order response sensitivities are with respect to the total microscopic cross sections. These results have motivated extending the previous adjoint-based derivations to third-order, leading to the derivation, in this work, of the exact mathematical expressions of the (180)<sup>3</sup> third-order sensitivities of the PERP leakage response with respect to these total microscopic cross sections. The formulas derived in this work are valid not only for the PERP benchmark but can also be used for computing the 3<sup>rd</sup>-order sensitivities of the leakage response of any nuclear system involving fissionable material and internal or external neutron sources. Subsequent works will use the adjoint-based mathematical expressions obtained in this work to compute exactly and efficiently the numerical values of these (180)<sup>3</sup> third-order sensitivities (which turned out to be very large and consequential) and use them for a third-order uncertainty analysis of the PERP benchmark’s leakage response.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Third-Order Adjoint Sensitivity Analysis of an OECD/NEA Reactor Physics Benchmark: I. Mathematical Framework
来源期刊 美国计算数学期刊(英文) 学科 数学
关键词 Polyethylene-Reflected Plutonium Sphere 1st-Order 2nd-Order and 3rd-Order Sensitivities 3rd-Order Adjoint Sensitivity Analysis Microscopic Total Cross Sections Expected Value Variance and Skewness of Response Distribution
年,卷(期) 2020,(4) 所属期刊栏目
研究方向 页码范围 503-528
页数 26页 分类号 O17
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Polyethylene-Reflected
Plutonium
Sphere
1st-Order
2nd-Order
and
3rd-Order
Sensitivities
3rd-Order
Adjoint
Sensitivity
Analysis
Microscopic
Total
Cross
Sections
Expected
Value
Variance
and
Skewness
of
Response
Distribution
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
美国计算数学期刊(英文)
季刊
2161-1203
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
355
总下载数(次)
1
总被引数(次)
0
论文1v1指导