作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Elegans are one of the best model organisms in neural researches, and tropism movement is a typical learning and memorizing activity. Based on one imaging technique called Fast Track-Capturing Microscope (FTCM), we investigated the movement regulation. Two movement patterns are extracted from various trajectories through analysis on turning angle. Then we applied this classification on trajectory regulation on the compound gradient field, and theoretical results corresponded with experiments well, which can initially verify the conclusion. Our breakthrough is performed computational geometric analysis on trajectories. Several independent features were combined to describe movement properties by principal composition analysis (PCA) and support vector machine (SVM). After normalizing all data sets, no-supervising machine learning was processed along with some training under certain supervision. The final classification results performed perfectly, which indicates the further application of such computational analysis in biology researches combining with machine learning.
推荐文章
LT码译码算法的研究
LT码
喷泉码
MPGE
译码算法
基于LT码数据分发协议性能分析
LT码
分发协议
无线传感网络
LT-B转基因烟草植株的建立
大肠杆菌热不稳定肠毒素B亚单位
转基因烟草
植物疫苗
根瘤农杆菌
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Computational Geometric Analysis for <i>C. elegans</i>Trajectories on Thermal and Salinity Gradient
来源期刊 美国计算数学期刊(英文) 学科 工学
关键词 C. elegans TROPISM Trajectories Classification Computational Geometric Analysis PCA
年,卷(期) 2020,(4) 所属期刊栏目
研究方向 页码范围 578-590
页数 13页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
C.
elegans
TROPISM
Trajectories
Classification
Computational
Geometric
Analysis
PCA
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
美国计算数学期刊(英文)
季刊
2161-1203
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
355
总下载数(次)
1
总被引数(次)
0
论文1v1指导