传统的机器翻译评价方法往往需要参考译文,利用机器双语互译评估(BLEU)值等方法比较翻译结果与参考译文之间的相似性.但是,在现实生活中却很难为每一句待翻译的句子找到参考答案,因此,不使用参考译文的译文质量估计(quality estimation,QE)方法有着更加广泛的应用场景.在该文中,基于多语言的预训练语言模型,利用联合编码的策略完成句子级的Q E任务,在W M T 2018的Q E任务德语→英语语言方向上的评测数据集上取得了最佳的实验结果.同时,对比了微调过程中不同网络结构对于该任务的影响,并探究了平行语料联合编码二次预训练在句子级跨语言任务上的效果.