基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对高光谱图像分类中光谱特征的高度非线性问题,提出一种基于多层感知器卷积层和批标准化层的改进卷积神经网络模型,提高模型在光谱域处理的非线性特征提取能力.该算法通过构建七层网络结构,实现多层局部感知结构,逐个像素对光谱信息开展分析,区分不同目标物的光谱信息,将全光谱段集合作为输入,舍去空间信息,利用动量梯度下降训练算法对多层局部感知卷积神经网络训练,实现对不同目标物体光谱特征的提取与分类.实验中,采用两组高光谱遥感影像进行对比分析,以Pavia U niversity 数据集为例,在3 600个训练样本情况下,测试集为1 800个样本,本文方法正确率为90.23%,LeNet-5正确率为87.94%,Linear-SVM 正确率为90.00%;在21 000个训练样本情况下,测试集为全部样本,本文方法正确率为97.23%,LeNet-5正确率为96.64%,Linear-SVM 正确率为92.40%.实验结果表明,在训练集较小的情况下,本文方法优于传统神经网络,能有效提取数据特征,并且在精度上和计算成本上略优于在小样本分类中具有高效和鲁棒性良好的SVM算法.在大规模训练集时,本文方法表现出良好的学习能力,在分类精度上优于LeNet-5.本文提出的多层局部感知网络结构增强了对非线性特征的学习能力,无论训练集规模大小,都比传统的SVM 和一般的深度学习网络更能有效的利用高光谱图像中的逐像素点的光谱域信息,能有效提高分类精度.
推荐文章
基于多层卷积神经网络的SAR图像分类方法
雷达目标识别
卷积神经网络
深度学习
MSTAR数据
基于加权K近邻和卷积神经网络的高光谱图像分类
高光谱图像分类
K近邻
卷积神经网络
基于卷积神经网络的植物图像分类方法研究
卷积神经网络
图像特征
图像分类
全卷积网络
植物图像
数据集
高光谱图像与卷积神经网络相结合的油桃轻微损伤检测
油桃
卷积神经网络
轻微损伤检测
颜色特征
图像分块
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 多层局部感知卷积神经网络的高光谱图像分类
来源期刊 四川大学学报(自然科学版) 学科 地球科学
关键词 高光谱图像 卷积神经网络 支持向量机 分类 非线性特征 多层局部感知
年,卷(期) 2020,(1) 所属期刊栏目 电子信息科学
研究方向 页码范围 103-112
页数 10页 分类号 P237
字数 6816字 语种 中文
DOI 10.3969/j.issn.0490-6756.2020.01.014
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈明 上海海洋大学农业部渔业信息重点实验室 58 263 8.0 13.0
2 池涛 上海海洋大学农业部渔业信息重点实验室 34 97 5.0 6.0
4 王洋 上海海洋大学农业部渔业信息重点实验室 6 36 3.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (218)
共引文献  (138)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1943(1)
  • 参考文献(0)
  • 二级参考文献(1)
1968(2)
  • 参考文献(0)
  • 二级参考文献(2)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(8)
  • 参考文献(0)
  • 二级参考文献(8)
2005(7)
  • 参考文献(0)
  • 二级参考文献(7)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(8)
  • 参考文献(0)
  • 二级参考文献(8)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(12)
  • 参考文献(0)
  • 二级参考文献(12)
2010(14)
  • 参考文献(0)
  • 二级参考文献(14)
2011(24)
  • 参考文献(1)
  • 二级参考文献(23)
2012(15)
  • 参考文献(0)
  • 二级参考文献(15)
2013(19)
  • 参考文献(0)
  • 二级参考文献(19)
2014(32)
  • 参考文献(0)
  • 二级参考文献(32)
2015(12)
  • 参考文献(0)
  • 二级参考文献(12)
2016(9)
  • 参考文献(2)
  • 二级参考文献(7)
2017(13)
  • 参考文献(1)
  • 二级参考文献(12)
2018(11)
  • 参考文献(3)
  • 二级参考文献(8)
2019(3)
  • 参考文献(2)
  • 二级参考文献(1)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高光谱图像
卷积神经网络
支持向量机
分类
非线性特征
多层局部感知
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
四川大学学报(自然科学版)
双月刊
0490-6756
51-1595/N
大16开
成都市九眼桥望江路29号
62-127
1955
chi
出版文献量(篇)
5772
总下载数(次)
10
总被引数(次)
25503
相关基金
上海市自然科学基金
英文译名:
官方网址:http://www.lawyee.net/Act/Act_Display.asp?RID=46696
项目类型:面上项目
学科类型:
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导