基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统语义分割网络速度慢、精度低的问题,提出一种基于密集层和注意力机制的快速场景语义分割方法.在ResNet网络中加入密集层和注意力模块,密集层部分采用两路传播方式,以更好地获得多尺度目标,并使用分组卷积减少计算量.同时在特征提取网络中加入注意力模块,以减少精度损失.实验结果表明,该方法在保证分割精度的前提下提升了分割速度,在Cityscapes数据集上得到了81.5%的MIOU,速度为42.3 frame/s,在ADE20K数据集上得到了61.8%的MIOU,速度为27.9 frame/s.
推荐文章
基于注意力机制的全景分割网络
全景分割
背景类实例重叠
三重态注意力机制
语义增强注意力机制
基于注意力机制的LSTM的语义关系抽取
文本信息
语义关系
关系抽取
LSTM
注意力机制
基于自注意力机制的方面情感分类
方面词
情感分类
自注意力机制
语义编码
一种基于注意力机制的AUV控制层指令理解方法
水下机器人(AUV)
指令理解
注意力模型
规划
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于密集层和注意力机制的快速语义分割
来源期刊 计算机工程 学科 工学
关键词 语义分割 轻量级网络 分组卷积 密集层 注意力机制
年,卷(期) 2020,(4) 所属期刊栏目 图形图像处理
研究方向 页码范围 247-252,259
页数 7页 分类号 TP391.4
字数 2956字 语种 中文
DOI 10.19678/j.issn.1000-3428.0054245
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵龙章 南京工业大学电气工程与控制科学学院 47 468 14.0 20.0
2 程晓悦 南京工业大学电气工程与控制科学学院 2 1 1.0 1.0
3 胡穹 南京工业大学电气工程与控制科学学院 3 1 1.0 1.0
4 史家鹏 南京工业大学电气工程与控制科学学院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (48)
共引文献  (46)
参考文献  (5)
节点文献
引证文献  (1)
同被引文献  (4)
二级引证文献  (0)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(10)
  • 参考文献(0)
  • 二级参考文献(10)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(4)
  • 参考文献(0)
  • 二级参考文献(4)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
语义分割
轻量级网络
分组卷积
密集层
注意力机制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
总被引数(次)
317027
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导