基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
微学习资源爆炸式的增长带来了大量未经组织处理的文本资源,大量以碎片化形式呈现的微学习资源为学习者的使用带来极大的不便.为让学习者能在碎片化的资源中找到适合于个性化学习的内容,对以文本形式的微学习资源进行聚类是很有必要的.为此,尝试将经过改进的密度峰值算法应用于微学习单元文本聚类.针对密度峰值算法在该领域聚类时存在向量空间高维稀疏、全局一致性不足、截断距离敏感、选择密度峰值中心需要人工监督等问题,使用潜在语义分析模型(LSA)建模,并提出2点改进:其一,针对聚类要求重新定义局部密度,并引入密度敏感距离作为聚类的判据,通过解决截断距离敏感性问题来解决聚类分配时全局一致性问题;其二,用线性拟合寻找野值点来自动寻找密度峰值中心,以实现非人工监督的峰值中心选取问题.微学习单元真实数据集上的实验验证结果表明,本文所提算法比原密度峰值算法以及其他经典聚类算法更适合于微学习单元文本聚类.
推荐文章
基于加权K近邻的改进密度峰值聚类算法
数据挖掘
加权K近邻
密度峰值
聚类
基于改进果蝇优化的密度峰值聚类算法
密度峰值聚类
截断距离
果蝇优化算法
Tent混沌
柯西变异
收敛性
基于相对密度的多耦合文本聚类算法
文本聚类
空间向量模型
相对密度
文本相似度
核心对象
基于优化密度的耦合空间LDA文本聚类算法研究
文本聚类
耦合空间模型
LDA主题模型
密度
阈值
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于LSA模型的改进密度峰值算法的微学习单元文本聚类研究
来源期刊 计算机工程与科学 学科 工学
关键词 微学习 文本聚类 密度聚类 LSA 密度敏感距离 线性拟合
年,卷(期) 2020,(4) 所属期刊栏目 人工智能与数据挖掘
研究方向 页码范围 722-732
页数 11页 分类号 TP301
字数 9172字 语种 中文
DOI 10.3969/j.issn.1007-130X.2020.04.020
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张月琴 太原理工大学信息与计算机学院 49 336 10.0 16.0
2 武国胜 太原理工大学信息与计算机学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (28)
共引文献  (102)
参考文献  (19)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1963(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(1)
  • 二级参考文献(0)
1985(1)
  • 参考文献(1)
  • 二级参考文献(0)
1988(1)
  • 参考文献(1)
  • 二级参考文献(0)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(8)
  • 参考文献(1)
  • 二级参考文献(7)
2012(3)
  • 参考文献(2)
  • 二级参考文献(1)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(6)
  • 参考文献(5)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
微学习
文本聚类
密度聚类
LSA
密度敏感距离
线性拟合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与科学
月刊
1007-130X
43-1258/TP
大16开
湖南省长沙市开福区德雅路109号国防科技大学计算机学院
42-153
1973
chi
出版文献量(篇)
8622
总下载数(次)
11
总被引数(次)
59030
相关基金
山西省自然科学基金
英文译名:Shanxi Natural Science Foundation
官方网址:http://sxnsfc.sxinfo.gov.cn/sxnsf/index.aspx
项目类型:
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导