基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In order to implement the robust cluster analysis, solve the problem that the outliers in the data will have a serious disturbance to the probability density parameter estimation, and there-fore affect the accuracy of clustering, a robust cluster analysis method is proposed which is based on the diversity self-paced t-mixture model. This model firstly adopts the t-distribution as the sub-model which tail is easily controllable. On this basis, it utilizes the entropy penalty expectation con-ditional maximal algorithm as a pre-clustering step to estimate the initial parameters. After that, this model introduces l2,1-norm as a self-paced regularization term and developes a new ECM optim-ization algorithm, in order to select high confidence samples from each component in training. Fi-nally, experimental results on several real-world datasets in different noise environments show that the diversity self-paced t-mixture model outperforms the state-of-the-art clustering methods. It provides significant guidance for the construction of the robust mixture distribution model.
推荐文章
A re-assessment of nickel-doping method in iron isotope analysis on rock samples using multi-collect
Fe isotope
Ni-doping
Stable isotope
Precision and accuracy
Mass bias correction
Pseudo-high mass resolution
Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quali
Groundwater
Multivariate analysis
Geostatistical modeling
Geochemical modeling
Mineralization
Ordinary Kriging
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 DSP-TMM: A Robust Cluster Analysis Method Based on Diversity Self-Paced T-Mixture Model
来源期刊 北京理工大学学报(英文版) 学科 工学
关键词
年,卷(期) 2020,(4) 所属期刊栏目
研究方向 页码范围 531-543
页数 13页 分类号 TP391
字数 语种 英文
DOI 10.15918/j.jbit1004-0579.20070
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1983(1)
  • 参考文献(1)
  • 二级参考文献(0)
1985(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
北京理工大学学报(英文版)
季刊
1004-0579
11-2916/T
16开
北京海淀中关村南大街5号(白石桥路7号)
1992
eng
出版文献量(篇)
2052
总下载数(次)
1
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导