基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
To ensure the safety and stability of power grids with photovoltaic (PV) generation integration, it is necessary to predict the output performance of PV modules under varying operating conditions. In this paper, an improved artificial neural network (ANN) method is proposed to predict the electrical characteristics of a PV module by combining several neural networks under different environmental conditions. To study the dependence of the output performance on the solar irradiance and temperature, the proposed neural network model is composed of four neural networks, it called multi-neural network (MANN). Each neural network consists of three layers, in which the input is solar radiation, and the module temperature and output are five physical parameters of the single diode model. The experimental data were divided into four groups and used for training the neural networks. The electrical properties of PV modules, including I-V curves, P-V curves, and normalized root mean square error, were obtained and discussed. The effectiveness and accuracy of this method is verified by the experimental data for different types of PV modules. Compared with the traditional single-ANN (SANN) method, the proposed method shows better accuracy under different operating conditions.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Improved artificial neural network method for predicting photovoltaic output performance
来源期刊 全球能源互联网(英文) 学科
关键词
年,卷(期) 2020,(6) 所属期刊栏目 Clean energy
研究方向 页码范围 553-561
页数 9页 分类号
字数 语种 英文
DOI 10.14171/j.2096-5117.gei.2020.06.005
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (5)
共引文献  (0)
参考文献  (20)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(3)
  • 二级参考文献(1)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(4)
  • 参考文献(4)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
全球能源互联网(英文)
双月刊
2096-5117
10-1551/TK
大16开
北京市西城区南横东街5号
82-910
2018
eng
出版文献量(篇)
259
总下载数(次)
0
论文1v1指导