基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
通过python爬取豆瓣网站上《少年的你》的短评文本,对评论文本进行清洗并利用构建的分词词典和停用词词典分别进行分词处理和去停用词处理后得到较为规范化的文本.利用TF-IDF算法提取评论文本的关键词,以关键词为基础建立LDA主题模型,从定量的角度提取评论主题,从而分析观众对这部电影的情感态度和评论的热点话题,为消费者的购买行为提供一定的决策支持,同时为商品提供者提供一定的发展方向.
推荐文章
一种改进TF-IDF的中文邮件识别算法研究
TF-IDF算法
邮件识别
卡方统计量
权重分配
邮件分类
仿真分析
结合改进的CHI统计方法的TF-IDF算法优化
文本分类
CHI统计
TF-IDF算法
特征选择
基于TF-IDF改进聚类算法的网络敏感信息挖掘
TF-IDF
聚类分析
网络敏感信息
信息挖掘
文本分类TF-IDF算法的改进研究
新词
词频-逆文档频率(TF-IDF)
向量空间模型
文本分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于TF-IDF和LDA主题模型的电影短评文本情感分析 ——以《少年的你》为例
来源期刊 现代电影技术 学科 社会科学
关键词 python爬虫 TF-IDF算法 LDA主题模型 情感分析
年,卷(期) 2020,(3) 所属期刊栏目 应用技术研究
研究方向 页码范围 42-46
页数 5页 分类号 G271.4
字数 4173字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵海清 岭南师范学院数学与统计学院 12 3 1.0 1.0
2 刘惠 岭南师范学院数学与统计学院 5 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (57)
共引文献  (13)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(6)
  • 参考文献(0)
  • 二级参考文献(6)
2017(6)
  • 参考文献(2)
  • 二级参考文献(4)
2018(9)
  • 参考文献(0)
  • 二级参考文献(9)
2019(11)
  • 参考文献(5)
  • 二级参考文献(6)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
python爬虫
TF-IDF算法
LDA主题模型
情感分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电影技术
月刊
1673-3215
11-5336/TB
16开
北京市海淀区科学院南路44号
2-319
1957
chi
出版文献量(篇)
3875
总下载数(次)
10
总被引数(次)
2984
论文1v1指导