基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The real-time transient stability assessment(TSA)and emergency control are effective measures to suppress accident expansion,prevent system instability,and avoid large-scale power outages in the event of power system failure.However,real-time assessment is extremely demanding on computing speed,and the traditional method is not competent.In this paper,an improved deep belief network(DBN)is proposed for the fast assessment of transient stability,which considers the structural characteristics of power system in the construction of loss function.Deep learning has been effective in many fields,but usually is considered as a black-box model.From the perspective of machine learning interpretation,this paper proposes a local linear interpreter(LLI)model,and tries to give a reasonable interpretation of the relationship between the system features and the assessment result,and illustrates the conversion process from the input feature space to the high-dimension representation space.The proposed method is tested on an IEEE new England test system and demonstrated on a regional power system in China.The result demonstrates that the proposed method has rapidity,high accuracy and good interpretability in transient stability assessment.
推荐文章
基于deep belief nets的维吾尔语句子级情感分析
维吾尔语
情感分类
深度学习
深度信念网络
词语嵌入
A re-assessment of nickel-doping method in iron isotope analysis on rock samples using multi-collect
Fe isotope
Ni-doping
Stable isotope
Precision and accuracy
Mass bias correction
Pseudo-high mass resolution
Distribution and assessment of hydrogeochemical processes of F-rich groundwater using PCA model: a c
Fluoride
Groundwater chemistry
PCA model
Hydrogeochemical processes
Yuncheng Basin
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Improved Deep Belief Network and Model Interpretation Method for Power System Transient Stability Assessment
来源期刊 现代电力系统与清洁能源学报(英文) 学科 工学
关键词 TRANSIENT stability assessment(TSA) representation learning deep BELIEF network(DBN) local linear interpretation(LLI) VISUALIZATION EMERGENCY control
年,卷(期) 2020,(1) 所属期刊栏目
研究方向 页码范围 27-37
页数 11页 分类号 TM712
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
TRANSIENT
stability
assessment(TSA)
representation
learning
deep
BELIEF
network(DBN)
local
linear
interpretation(LLI)
VISUALIZATION
EMERGENCY
control
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电力系统与清洁能源学报(英文)
双月刊
2196-5625
32-1884/TK
No. 19 Chengxin Aven
出版文献量(篇)
386
总下载数(次)
0
总被引数(次)
0
论文1v1指导