基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
软件安全问题的发生在大多数情况下会造成非常严重的后果,及早发现安全问题,是预防安全事故的关键手段之一.安全缺陷报告预测可以辅助开发人员及早发现被测软件中潜藏的安全缺陷,从而尽早得以修复.然而,由于安全缺陷在实际项目中的数量较少,而且特征复杂(即安全缺陷类型繁多,不同类型安全缺陷特征差异性较大),这使得手工提取特征相对困难,并随后造成传统机器学习分类算法在安全缺陷报告预测性能方面存在一定的瓶颈.针对该问题,提出基于深度学习的安全缺陷报告预测方法,采用深度文本挖掘模型TextCNN和TextRNN构建安全缺陷报告预测模型;针对安全缺陷报告文本特征,使用Skip-Gram方式构建词嵌入矩阵,并借助注意力机制对TextRNN模型进行优化.所构建的模型在5个不同规模的安全缺陷报告数据集上展开了大规模实证研究,实证结果表明,深度学习模型在80%的实验案例中都优于传统机器学习分类算法,性能指标F1-score平均可提升0.258,在最好的情况下甚至可以提升0.535.此外,针对安全缺陷报告数据集存在的类不均衡问题,对不同采样方法进行了实证研究,并对结果进行了分析.
推荐文章
基于深度学习的金属焊接管道内壁缺陷检测方法研究
金属焊接管道
深度学习
缺陷检测
基于深度学习的磁芯表面缺陷检测研究
磁芯
缺陷检测
深度卷积生成对抗网络
图像融合
深度学习
基于深度学习的故障预测技术研究
深度学习
故障预测
故障演化
软件静态故障预测
基于深度学习的木材缺陷图像检测方法
深度学习
卷积神经网络
区域建议网络
木材缺陷图像
CV
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的安全缺陷报告预测方法实证研究
来源期刊 软件学报 学科 工学
关键词 安全缺陷 安全缺陷报告预测 深度学习 文本挖掘
年,卷(期) 2020,(5) 所属期刊栏目 系统软件构造与验证技术专题
研究方向 页码范围 1294-1313
页数 20页 分类号 TP311
字数 16623字 语种 中文
DOI 10.13328/j.cnki.jos.005954
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈翔 西北工业大学软件学院 64 475 12.0 19.0
3 吴潇雪 西北工业大学自动化学院 8 19 2.0 4.0
4 陈军正 西北工业大学软件学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
安全缺陷
安全缺陷报告预测
深度学习
文本挖掘
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件学报
月刊
1000-9825
11-2560/TP
16开
北京8718信箱
82-367
1990
chi
出版文献量(篇)
5820
总下载数(次)
36
论文1v1指导