基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在信息抽取过程中,无法被判别的回指易造成信息抽取不完整的情况,这种指代关系可通过分析当前语境下的指代部分、被指代部分、周围的信息及原文内容生成的唯一判别信息进行判断.为此,构建一个多层注意力机制模型,在不同层次上对上述信息进行基于注意力机制的概率计算,利用最终结果判别回指关系是否成立.在指代部分与被指代部分向量化后,通过2个注意力层上的4次概率计算,使每一个训练结果在判别之前都具有唯一性.在OntoNotes 5.0数据集上的实验结果表明,该模型F值在显性指代和零指代均存在的条件下为70.1%,在存在零指代的条件下为60.7%,高于尹庆宇等人提出的模型.
推荐文章
基于多层注意力机制—柔性AC算法的机器人路径规划
行动者—评论家算法
注意力机制
深度强化学习
机器人路径规划
基于注意力机制的全景分割网络
全景分割
背景类实例重叠
三重态注意力机制
语义增强注意力机制
基于注意力机制的音乐深度推荐算法
深度学习
注意力机制
音乐推荐
基于多层次注意力机制一维DenseNet音频事件检测
音频事件检测
深度学习
DenseNet
多层次注意力机制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多层注意力机制的回指消解算法
来源期刊 计算机工程 学科 工学
关键词 指代关系 注意力机制 显性指代 零指代 多层注意力机制模型
年,卷(期) 2020,(2) 所属期刊栏目 人工智能与模式识别
研究方向 页码范围 59-64,71
页数 7页 分类号 TP18
字数 6356字 语种 中文
DOI 10.19678/j.issn.1000-3428.0053545
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吕鹏飞 5 21 1.0 4.0
2 付立军 中国科学院大学计算机科学与技术学院 3 4 2.0 2.0
6 刘俊明 中国科学院大学计算机科学与技术学院 2 2 1.0 1.0
10 刘雨江 中国科学院大学计算机科学与技术学院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (56)
共引文献  (11)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(7)
  • 参考文献(0)
  • 二级参考文献(7)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(8)
  • 参考文献(0)
  • 二级参考文献(8)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
指代关系
注意力机制
显性指代
零指代
多层注意力机制模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
总被引数(次)
317027
论文1v1指导