作者:
原文服务方: 江西科学       
摘要:
随着语音识别和自然语言处理技术的成熟,智能语音技术逐步落地到各行各业,但目前智能语音产品缺乏情感的交互,未实现真正的智能。为了提升智能语音产品的拟人性,学术界对语音情感识别的研究热度越来越高,但是多局限在使用传统特征工程以及通用深度学习模型上。在应用深度学习模型的基础上引入注意力机制对语音情感识别展开研究,选用语谱图作为输入特征,并对CNN输出的特征进行通道维度的注意力关注,分析注意力计算过程中不同池化方式对识别结果的影响,并引入残差,提升模型表现力,最终UA实现了2.83%的提升。
推荐文章
基于混合式注意力机制的语音识别研究
卷积
注意力机制
全局平均池化
长短期记忆网络
LAS模型
融合注意力机制和区域生长的裂缝识别算法研究
数字图像
裂缝识别
区域生长
注意力机制
基于自注意力机制的方面情感分类
方面词
情感分类
自注意力机制
语义编码
一种基于自注意力机制的组推荐方法
群组推荐
自注意力机制
协同过滤
深度学习
融合策略
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于注意力机制的语音情感识别算法研究
来源期刊 江西科学 学科 地球科学
关键词 语音情感识别 深度学习 注意力机制 语谱图
年,卷(期) 2022,(4) 所属期刊栏目 信息科学
研究方向 页码范围 758-761
页数 3页 分类号 TN912.34
字数 语种 中文
DOI 10.13990/j.issn1001-3679.2022.04.025
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
语音情感识别
深度学习
注意力机制
语谱图
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
江西科学
双月刊
1001-3679
36-1093/N
大16开
1983-01-01
chi
出版文献量(篇)
4032
总下载数(次)
0
总被引数(次)
17843
论文1v1指导