原文服务方: 计算机应用研究       
摘要:
针对图像标注和attention机制结合过程中特征选择不充分和预测过程中对空间特征权重比例不足的问题,提出了一种结合空间特征的注意力图像标注方法.首先通过卷积神经网络得到图像特征,特征区域与文本标注序列匹配;然后通过attention机制给标注词汇加权,结合空间特征提取损失函数得到基于空间特征注意力的图像标注;最后分别在Flickr30k和MS-COCO两个数据集上进行验证,通过可视化显示该模型如何自动学习显著区域并生成相应的词汇输出序列.实验结果表明,该方法能较好地提取注意力区域并给出标注,与其他模型对比能够得到更好的标注结果.
推荐文章
基于空间注意力与图卷积的多标签图像分类算法
图卷积网络
多标签图像分类
空间注意力
特征融合
具有全局特征的空间注意力机制
卷积神经网络
空间注意力机制
全局特征
特征融合
目标分类
目标检测
一种新的注意力相关脑电分类算法设计
支持向量机
数据融合理论
脑电
注意力
一种基于注意力机制的语音情感识别算法研究
语音情感识别
深度学习
注意力机制
语谱图
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种结合空间特征的图像注意力标注算法改进研究
来源期刊 计算机应用研究 学科
关键词 视觉注意力 图像标注 空间特征
年,卷(期) 2019,(1) 所属期刊栏目 图形图像技术
研究方向 页码范围 288-291,315
页数 5页 分类号 TP391
字数 语种 中文
DOI 10.19734/j.issn.1001-3695.2017.08.0869
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 石林 常州大学信息科学与工程学院 29 75 6.0 7.0
5 徐守坤 常州大学信息科学与工程学院 68 194 6.0 10.0
9 周佳 常州大学信息科学与工程学院 3 7 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (18)
参考文献  (8)
节点文献
引证文献  (1)
同被引文献  (9)
二级引证文献  (0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
视觉注意力
图像标注
空间特征
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导