基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高空气质量预测精度,提出一种基于粒子群算法优化极限学习机的空气质量预测模型.运用粒子群算法优化极限学习机的初始权值和偏置,在保证预测误差最小的情况下实现空气质量最优预测.选择平均绝对百分比误差、均方根误差和平均绝对误差作为评价指标,通过PSO-ELM、GA-ELM、SOA-ELM、DE-ELM和ELM五个模型预测结果对比发现,PSO-ELM可以有效提高空气质量预报的预测精度,可为空气质量预测提供新的方法和途径.
推荐文章
基于神经网络的空气质量采集系统的设计
空气质量采集
神经网络
空气清新器
多传感器
基于竞争型神经网络的城市空气质量分析
空气质量等级
API
竞争型神经网络
基于粗糙集和BP神经网络的空气质量评价方法
粗糙集
BP神经网络
评价
属性约简
训练
基于粒子群优化算法的最优极限学习机
粒子群算法
极限学习机
隐层节点
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PSO优化极限学习机神经网络的空气质量预报
来源期刊 沈阳工业大学学报 学科 工学
关键词 粒子群算法 极限学习机 空气质量指数 神经网络 相对误差 遗传算法 差分进化算法 人群搜索算法
年,卷(期) 2020,(2) 所属期刊栏目 信息科学与工程
研究方向 页码范围 213-217
页数 5页 分类号 TM343
字数 2891字 语种 中文
DOI 10.7688/j.issn.1000-1646.2020.02.17
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黎蔚 河南科技大学信息工程学院 32 233 8.0 13.0
2 庄玉册 信阳学院数学与信息学院 6 4 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (106)
共引文献  (47)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(7)
  • 参考文献(1)
  • 二级参考文献(6)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(10)
  • 参考文献(0)
  • 二级参考文献(10)
2010(9)
  • 参考文献(0)
  • 二级参考文献(9)
2011(9)
  • 参考文献(0)
  • 二级参考文献(9)
2012(15)
  • 参考文献(0)
  • 二级参考文献(15)
2013(13)
  • 参考文献(0)
  • 二级参考文献(13)
2014(20)
  • 参考文献(0)
  • 二级参考文献(20)
2015(7)
  • 参考文献(5)
  • 二级参考文献(2)
2016(7)
  • 参考文献(6)
  • 二级参考文献(1)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
粒子群算法
极限学习机
空气质量指数
神经网络
相对误差
遗传算法
差分进化算法
人群搜索算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
沈阳工业大学学报
双月刊
1000-1646
21-1189/T
大16开
沈阳市铁西区南十三路1号
8-165
1964
chi
出版文献量(篇)
2983
总下载数(次)
5
总被引数(次)
22269
论文1v1指导