基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Image technology is applied more and more to help doctors to improve the accuracy of tumor diagnosis as well as researchers to study tumor characteristics. Image segmentation technology is an important part of image treatment. This paper summarizes the advances of image segmentation by using artificial neural network including mainly the BP network and convolutional neural network (CNN). Many CNN models with different structures have been built and successfully used in segmentation of tumor images such as supervised and unsupervised learning CNN. It is shown that the application of artificial network can improve the efficiency and accuracy of segmentation of tumor image. However, some deficiencies of image segmentation by using artificial neural network still exist. For example, new methods should be found to reduce the cost of building the marked data set. New artificial networks with higher efficiency should be built.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Advances on Tumor Image Segmentation Based on Artificial Neural Network
来源期刊 生物科学与医学(英文) 学科 工学
关键词 Artificial Neural Network Segmentation of Tumor Image Convolutional Neural Network
年,卷(期) 2020,(7) 所属期刊栏目
研究方向 页码范围 55-62
页数 8页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Artificial
Neural
Network
Segmentation
of
Tumor
Image
Convolutional
Neural
Network
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
生物科学与医学(英文)
月刊
2327-5081
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
721
总下载数(次)
0
总被引数(次)
0
论文1v1指导