基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着信息技术在工业制造领域的深入应用,工业制造大数据研究正成为实现智能制造、帮助政府指导制造企业转型升级的重要参考依据.在传统的钢铁、铝材等金属制造行业,更是存在生产方式粗放、生产工艺简单等问题.因此,迫切需要利用人工智能等新一代信息技术来改善生产流程,提高生产效率.在使用铝材时,必须检查铝材表面.现有的铝材表面缺陷检测受限于传统人工肉眼检查,十分费力,或基于传统的机器视觉算法,识别率不高,通常不能及时准确地判断出表面瑕疵.为解决这些问题,利用深度学习来进行铝材表面缺陷检测:首先运用两大目标检测算法Faster R-CNN(Region-CNN(Convolutional Neural Networks》)和YOLOv3对制作的铝材缺陷数据集进行检测;然后基于YOLOv3算法进行改进,提升铝材表面很小缺陷的检测效果.在广东工业智造大数据创新大赛提供的“铝型材瑕疵识别”数据集上进行了实验验证,实验结果显示,改进算法的平均精度均值(mean Average Precision,mAP)比YOLOv3算法高3.4%,比Faster R-CNN算法高1.8%.
推荐文章
基于深度主动学习的磁片表面缺陷检测
卷积神经网络
主动学习
缺陷检测
基于深度学习的磁芯表面缺陷检测研究
磁芯
缺陷检测
深度卷积生成对抗网络
图像融合
深度学习
基于深度学习算法的带钢表面缺陷识别
带钢表面
深度学习
分类准确性
缺陷识别
深度学习在工业表面缺陷检测领域的应用研究
深度学习
卷积神经网络
缺陷检测
工业应用
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的铝材表面缺陷检测
来源期刊 华东师范大学学报(自然科学版) 学科 工学
关键词 铝材缺陷 检测 机器视觉 深度学习
年,卷(期) 2020,(6) 所属期刊栏目 计算机科学
研究方向 页码范围 105-114
页数 10页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1000-5641.201921021
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张旭 24 110 6.0 9.0
2 黄定江 5 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (4)
共引文献  (4)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(4)
  • 参考文献(3)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
铝材缺陷
检测
机器视觉
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华东师范大学学报(自然科学版)
双月刊
1000-5641
31-1298/N
16开
上海市中山北路3663号
4-359
1955
chi
出版文献量(篇)
2430
总下载数(次)
5
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导