原文服务方: 西安工程大学学报       
摘要:
为了解决带钢表面缺陷识别过程中的特征不能自动准确提取的问题,给出了基于深度学习算法的带钢表面缺陷识别的新方法.本文在分析深度学习基本理论的基础上,建立了带钢表面识别的基础模型;然后,通过训练样本图像获取基础模型参数.该模型通过多隐层逐层抽取图像特征,从而自动获取目标的本质特征,进而进行识别分类;最后,通过实验验证本文算法的有效性.实验结果表明,本文带钢表面缺陷识别的准确率能达到98%以上,满足了带钢识别的要求.
推荐文章
基于机器视觉的带钢表面缺陷检测研究进展
热轧带钢
表面缺陷
检测方法
机器视觉
基于深度主动学习的磁片表面缺陷检测
卷积神经网络
主动学习
缺陷检测
基于边缘感知和小样本学习的多尺度带钢表面缺陷分割方法
语义分割
表面缺陷检测
小样本学习
特征金字塔注意力
全局注意力上采样模块
基于深度学习的磁芯表面缺陷检测研究
磁芯
缺陷检测
深度卷积生成对抗网络
图像融合
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习算法的带钢表面缺陷识别
来源期刊 西安工程大学学报 学科
关键词 带钢表面 深度学习 分类准确性 缺陷识别
年,卷(期) 2017,(5) 所属期刊栏目 机电工程
研究方向 页码范围 669-674
页数 6页 分类号 TH83
字数 语种 中文
DOI 10.13338/j.issn.1674-649x.2017.05.012
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 管声启 西安工程大学机电工程学院 67 250 8.0 11.0
2 王立中 西安工程大学机电工程学院 4 17 2.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (42)
共引文献  (324)
参考文献  (12)
节点文献
引证文献  (9)
同被引文献  (30)
二级引证文献  (10)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(6)
  • 参考文献(1)
  • 二级参考文献(5)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(4)
  • 参考文献(3)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(12)
  • 引证文献(5)
  • 二级引证文献(7)
2020(4)
  • 引证文献(1)
  • 二级引证文献(3)
研究主题发展历程
节点文献
带钢表面
深度学习
分类准确性
缺陷识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西安工程大学学报
双月刊
1674-649X
61-1471/N
大16开
1986-01-01
chi
出版文献量(篇)
3377
总下载数(次)
0
总被引数(次)
15983
论文1v1指导