原文服务方: 微电子学与计算机       
摘要:
针对现阶段基于深度学习的调制识别算法中出现的检测效率低下的问题,提出一种高效的调制识别算法—RadioFSDet(Radio Frequency Spectrum Detection)检测算法.RadioFSDet算法利用信号在频谱图上的特征差异,使用目标检测算法YOLOv4检测频谱图上的调制信号.相较于主流的基于深度学习的调制识别算法,RadioFSDet算法不仅能够在一次模型推理中检测出多个信号的调制类别,还能够大致确定每个信号的中心频率.实验结果表明,RadioFSDet算法对在真实场景下采集的多个超短波全频段中的AM、FM、GSM和QPSK信号均实现良好的检测,平均检测精度达到71%,同时在公开数据集RadioML2016的实验中,RadioFSDet算法对信噪比在0~18dB下的AM、FM和QPSK信号实现87%的平均检测精度.此外,为了进一步加快RadioFSDet算法的检测速度,本文结合计算机视觉领域的最新研究成果,提出一种高效的轻量级检测网络RadioFSNet,该网络的参数量不仅由原来的6 400万下降至220万,而且模型的检测精度不会下降.实验结果表明,在超短波全频段的数据集中, RadioFSNet的检测速度达到77FPS,平均每秒钟检测231个信号,大幅度提高模型的检测效率.
推荐文章
基于深度学习的图像识别技术研究综述
图像识别
CNN
R-CNN
SPP-Net
FastR-CNN
基于深度特征学习的图像自适应目标识别算法
深度学习
卷积神经网络
自适应
图像识别
算法
基于深度学习算法的带钢表面缺陷识别
带钢表面
深度学习
分类准确性
缺陷识别
基于深度学习的手势识别算法设计
深度学习
卷积神经网络
实时手势识别
高效性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于图像深度学习的调制识别算法
来源期刊 微电子学与计算机 学科 工学
关键词 卷积神经网络 目标检测 计算机视觉 调制识别
年,卷(期) 2022,(6) 所属期刊栏目 人工智能与算法
研究方向 页码范围 31-40
页数 9页 分类号 TP391
字数 语种 中文
DOI 10.19304/J.ISSN1000-7180.2021.1274
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
目标检测
计算机视觉
调制识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
总被引数(次)
59060
论文1v1指导