原文服务方: 现代电子技术       
摘要:
智能交通和自动驾驶成为当下研究的热点问题,而交通标志识别是其中必不可少的一项关键性技术,当下急需一种准确、高效的交通标志识别方法.针对以上问题,文中构建了一种基于深度学习的交通标志识别模型TSR_Lenet;同时由于基于深度学习的模型在训练过程中存在收敛速度慢、容易收敛到局部最优的问题,将Momentum加速学习的优点与RMSProp抑制训练过早结束的优势相融合,使得构建模型的过程更加快速、高效.实验结果表明,所提出的基于深度学习的交通标志识模型TSR_Lenet,具有自动学习的能力和训练模型周期短的优点,并且准确性高,鲁棒性好,具有良好的泛化能力.
推荐文章
基于多示例深度学习与损失函数优化的交通标志识别算法
交通标志识别
损失函数优化
训练集
多示例
深度学习
背景约束
基于深度学习的交通标志识别智能车的设计与实现
深度学习
交通标志识别
小型智能车
STM32
树莓派
ConvNets
基于级联端对端深度架构的交通标志识别方法
深度学习
交通标志识别
ESPCN网络
RFCN网络
平衡采样
数据增强
基于视觉传达技术的交通标志图像智能识别
智能识别
交通智能管理
交通标志图像
视觉传达技术
图像预处理
图像自动分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的交通标志识别算法研究
来源期刊 现代电子技术 学科
关键词 交通标志识别 深度学习 卷积神经网络 TSR_Lenet 算法融合 实验对比
年,卷(期) 2019,(22) 所属期刊栏目 前沿交叉科学
研究方向 页码范围 164-168,173
页数 6页 分类号 TN965+.7-34|TP391.4
字数 语种 中文
DOI 10.16652/j.issn.1004-373x.2019.22.035
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郭志涛 河北工业大学电子信息工程学院 47 339 9.0 16.0
2 袁金丽 河北工业大学电子信息工程学院 16 210 7.0 14.0
3 雷瑶 河北工业大学电子信息工程学院 3 4 1.0 2.0
4 史龙云 河北工业大学电子信息工程学院 3 4 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1951(1)
  • 参考文献(1)
  • 二级参考文献(0)
1962(1)
  • 参考文献(1)
  • 二级参考文献(0)
1980(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
交通标志识别
深度学习
卷积神经网络
TSR_Lenet
算法融合
实验对比
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导