原文服务方: 微电子学与计算机       
摘要:
针对磁盘数据集中正负样本数目严重不平衡导致基于机器学习的分类算法易出现故障预测准确率低的问题,本文提出一种基于自适应加权Bagging-GBDT算法的磁盘故障预测模型.首先,提出基于聚类的分层欠采样方法对健康磁盘样本进行多次抽样,解决随机欠采样方法易丢弃潜在有用样本的问题;其次,将每次采样后样本与全部故障磁盘样本组合得到多个样本子集,通过训练这些子集建立多个预测精度较高的GBDT子分类模型;最后,根据待测点邻域样本类别自适应确定各子模型权重,据此通过加权硬投票集成最终的磁盘故障预测模型.在8组KEEL不平衡数据集上实验结果表明,与现有典型不平衡学习算法相比,少数类的召回率平均提升了9.46%;同时在磁盘公开数据集和某调度系统磁盘数据上对比验证了该方法在故障预测率上的先进性.
推荐文章
基于Ext-GBDT集成的类别不平衡信用评分模型
信用评分
类别不平衡
代价敏感
Ext-GBDT
集成学习
面向类不平衡数据集的软件缺陷预测模型
软件缺陷预测
类不平衡数据
特征选择
集成算法
基于模糊Bagging-GBDT的短期负荷预测模型研究
GBDT
Bagging
模糊理论
短期负荷预测
电力系统
基于不平衡数据集的软件缺陷预测
软件失效预测
不平衡数据
主成分分析
分类回归树
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 不平衡数据集下基于自适应加权Bagging-GBDT算法的磁盘故障预测模型
来源期刊 微电子学与计算机 学科
关键词 磁盘故障预测 不平衡数据集 分层欠采样 Bagging-GBDT 自适应加权
年,卷(期) 2020,(3) 所属期刊栏目
研究方向 页码范围 14-19
页数 6页 分类号 TP391
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (41)
共引文献  (23)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(6)
  • 参考文献(1)
  • 二级参考文献(5)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(4)
  • 参考文献(2)
  • 二级参考文献(2)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(4)
  • 参考文献(4)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
磁盘故障预测
不平衡数据集
分层欠采样
Bagging-GBDT
自适应加权
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
总被引数(次)
59060
论文1v1指导