基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
集合经验模态分解(EEMD,ensemble empirical mode decomposition)对信号进行分解,得到的模态函数(IMF,Intrinsic model function)在2 端点存在严重的发散现象,如果将分解结果直接应用到故障诊断系统中,会导致诊断的准确率下降.首先将支持向量机(SVM,support vector machine)和EEMD算法结合进行信号分解,并利用仿真信号进行可靠性分析;其次对SVM(support rector machine)-EEMD分解的分量进行选择后再分解并构建能量向量,最后和卷积神经网络结合,构建滚动轴承故障诊断模型并通过实验验证.结果表明,改进EEMD算法可以有效缓解端点发散问题,构建的故障诊断模型提高了故障诊断精度.
推荐文章
基于卷积神经网络的滚动轴承故障诊断方法
深度学习
卷积神经网络
特征自动提取
轴承故障诊断
基于EEMD 和改进VPMCD 的滚动轴承故障诊断方法
改进VPMCD
EEMD方法
奇异值分解
滚动轴承
故障诊断
基于改进的RBF神经网络的滚动轴承故障诊断
RBF神经网络
减聚类算法
故障诊断
滚动轴承
基于概率神经网络的滚动轴承故障诊断
PNN网络
BP神经网络
故障诊断
滚动轴承
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进EEMD的卷积神经网络滚动轴承故障诊断
来源期刊 重庆大学学报 学科 工学
关键词 集合经验模态分解 卷积神经网络 故障诊断
年,卷(期) 2020,(1) 所属期刊栏目
研究方向 页码范围 82-89
页数 8页 分类号 TN911
字数 语种 中文
DOI 10.11835/j.issn.1000-582X.2020.01.009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李孝全 空军工程大学防空反导学院 34 145 7.0 10.0
2 赵玉伟 空军工程大学防空反导学院 4 1 1.0 1.0
3 何江江 空军工程大学研究生院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (32)
共引文献  (43)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(7)
  • 参考文献(1)
  • 二级参考文献(6)
2018(8)
  • 参考文献(3)
  • 二级参考文献(5)
2019(7)
  • 参考文献(7)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
集合经验模态分解
卷积神经网络
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
重庆大学学报
月刊
1000-582X
50-1044/N
大16开
重庆市沙坪坝正街174号
78-16
1960
chi
出版文献量(篇)
6349
总下载数(次)
8
论文1v1指导