原文服务方: 计算技术与自动化       
摘要:
轴承为风电机组的重要且故障频发部件,传统基于轴承振动数据的图像转换的卷积神经网络(CNN)的故障诊断技术存在一定局限性。提出了一种基于改进深度卷积神经网络(IDCNN)的直接时间序列特征提取方法,依据采样频率将原始振动数据划分为单个样本,构建诊断模型训练数据集。设计了一种新型的深度卷积神经网络(IDCNN),自动提取复杂样本数据的故障特征,提高DCNN的鲁棒性和泛化性,并将IDCNN提取的高维故障特征输入到分类器中,从而实现轴承故障的智能诊断。对比实验结果表明本方法有效提升了故障诊断精度。
推荐文章
基于卷积神经网络的滚动轴承故障诊断方法
深度学习
卷积神经网络
特征自动提取
轴承故障诊断
采用多通道样本和深度卷积神经网络的轴承故障诊断方法
轴承故障诊断
三通道样本
深度卷积神经网络
连续小波变换
基于改进深度置信网络的故障诊断方法
故障诊断
深度置信网络
特征提取
自适应谐振
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进深度卷积神经网络的轴承故障诊断
来源期刊 计算技术与自动化 学科 工学
关键词 风电机组 轴承 故障诊断 深度卷积神经网络
年,卷(期) 2024,(3) 所属期刊栏目 自动控制理论及应用
研究方向 页码范围 19-26
页数 8页 分类号
字数 语种 中文
DOI 10.16339/j.cnki.jsjsyzdh.202303004
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2024(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
风电机组
轴承
故障诊断
深度卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算技术与自动化
季刊
1003-6199
43-1138/TP
16开
1982-01-01
chi
出版文献量(篇)
2979
总下载数(次)
0
总被引数(次)
14675
论文1v1指导