基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
以水稻叶片为研究对象,基于健康和稻瘟病叶片高光谱图像,运用高光谱特征参数、竞争性自适应重加权(CARS)和主成分分析(PCA)算法选取特征变量,采用偏最小二乘回归(PLSR)、支持向量机(SVM)和反向传播神经网络(BPNN)算法,构建水稻叶片SPAD值高光谱估测模型,并对比分析.结果 表明,所有模型均可预测SPAD值,最优模型为PCA-BPNN,其预测集决定系数、均方根误差、相对误差分别为0.8082、2.0783、4.18%.研究表明基于健康和稻瘟病叶片的高光谱图像估测叶绿素含量可行,为水稻健康状况监测、病害影响评估提供理论基础.
推荐文章
水稻叶片SPAD值的高光谱估算模型
水稻
SPAD值
高光谱
多元逐步线性回归
支持向量机回归
基于高光谱成像技术的水稻叶片SPAD值及其分布问题研究
高光谱成像
偏最小二乘法
植被指数
SPAD预测模型
SPAD分布
高光谱成像医学诊断的探讨
高光谱成像
光学诊断
原理
临床应用
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 水稻叶片SPAD值高光谱成像估测
来源期刊 东北农业大学学报 学科 工学
关键词 高光谱成像 稻瘟病 SPAD值 反向传播神经网络
年,卷(期) 2020,(10) 所属期刊栏目 研究报告
研究方向 页码范围 89-96
页数 8页 分类号 TP391.4
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (182)
共引文献  (75)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(7)
  • 参考文献(0)
  • 二级参考文献(7)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(6)
  • 参考文献(1)
  • 二级参考文献(5)
2008(12)
  • 参考文献(0)
  • 二级参考文献(12)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(9)
  • 参考文献(0)
  • 二级参考文献(9)
2011(16)
  • 参考文献(0)
  • 二级参考文献(16)
2012(17)
  • 参考文献(1)
  • 二级参考文献(16)
2013(11)
  • 参考文献(0)
  • 二级参考文献(11)
2014(15)
  • 参考文献(0)
  • 二级参考文献(15)
2015(19)
  • 参考文献(2)
  • 二级参考文献(17)
2016(12)
  • 参考文献(3)
  • 二级参考文献(9)
2017(17)
  • 参考文献(0)
  • 二级参考文献(17)
2018(8)
  • 参考文献(4)
  • 二级参考文献(4)
2019(6)
  • 参考文献(3)
  • 二级参考文献(3)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高光谱成像
稻瘟病
SPAD值
反向传播神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
东北农业大学学报
月刊
1005-9369
23-1391/S
大16开
哈尔滨市木材街59号
14-47
1957
chi
出版文献量(篇)
4521
总下载数(次)
9
总被引数(次)
44139
论文1v1指导