基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
笔者采用基于卷积神经网络的TextCNN模型,利用多尺寸卷积核的卷积神经网络进行数据特征提取,并对其进行优化来提高零售商品分类准确率.通过爬取京东网站零售商品信息进行实验,并对比基于TF-IDF的传统机器学习模型和使用广泛的LSTM模型,证明了TextCNN模型在商品信息分类上的优势.
推荐文章
基于复数权网络的零售商品关联分析方法
复杂网络
复数权网络
先后购买关系
商品推荐
传统零售转型新零售存在问题与对策
传统零售
新零售
问题
对策
如何开展零售联合体平台销售模式
市场细分
产品定位
零售联合体平台
差异化营销
顶层设计
零售药店选址探讨
零售药店
选址
调查
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 运用TextCNN的零售平台商品分类
来源期刊 信息与电脑 学科 工学
关键词 零售商品 TextCNN模型 对比 优化
年,卷(期) 2020,(1) 所属期刊栏目 算法语言
研究方向 页码范围 47-49
页数 3页 分类号 TP311.5
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 徐雪娇 2 0 0.0 0.0
2 蒋超 2 0 0.0 0.0
3 刘义 4 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (34)
共引文献  (29)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(4)
  • 参考文献(0)
  • 二级参考文献(4)
2017(2)
  • 参考文献(0)
  • 二级参考文献(2)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
零售商品
TextCNN模型
对比
优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息与电脑
半月刊
1003-9767
11-2697/TP
北京市东城区北河沿大街79号
chi
出版文献量(篇)
16624
总下载数(次)
72
总被引数(次)
19907
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导