基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
钢铁企业实际生产中产生海量数据,在数据中隐藏着潜在的规律,针对高炉煤气产生量波动频繁,传统的预测算法精度低误差大的问题,本文通过对数据进行经验模态分解,建立一种EMD和LSSVM相结合的预测模型.首先将原始数据运用EMD方法分解成多个IMF分量和Res分量,对每个分量单独建立LSSVM预测模型,最后将各个分量的预测结果进行叠加重构得到最终的预测结果.本文所提出的方法,对某钢铁企业的实际生产中数据进行预测实验,结果表明,EMD-LSSVM算法确实可以提高预测的精度.
推荐文章
基于小波分析的ARIMA与LSSVM组合的高炉煤气预测
高炉煤气
小波分析
最小二乘支持向量机
ARIMA模型
组合预测
钢铁企业高炉煤气发生量的在线预测建模
BFG发生量
改进经验模式分解阈值滤波
最小二乘支持向量机
贝叶斯优化
基于PSO-BP神经网络的高炉煤气受入量的预测
高炉煤气
受入量预测
预测模型
PSO-BP神经网络
模型训练
模型检验
基于自适应遗忘因子极限学习机的高炉煤气预测
高炉煤气
在线预测
极限学习机
遗忘因子
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 EMD-LSSVM模型预测高炉煤气产生量
来源期刊 网络安全技术与应用 学科
关键词 高炉煤气预测 SVM LSSVM EMD 灰色关联度 BP网络
年,卷(期) 2020,(1) 所属期刊栏目 安全模型、算法与编程
研究方向 页码范围 58-60
页数 3页 分类号
字数 2917字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李志刚 华北理工大学信息工程学院 14 20 3.0 4.0
2 张鑫 华北理工大学电气工程学院 11 8 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (65)
共引文献  (33)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(9)
  • 参考文献(1)
  • 二级参考文献(8)
2010(8)
  • 参考文献(1)
  • 二级参考文献(7)
2011(7)
  • 参考文献(0)
  • 二级参考文献(7)
2012(11)
  • 参考文献(1)
  • 二级参考文献(10)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(6)
  • 参考文献(1)
  • 二级参考文献(5)
2017(4)
  • 参考文献(3)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高炉煤气预测
SVM
LSSVM
EMD
灰色关联度
BP网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
网络安全技术与应用
月刊
1009-6833
11-4522/TP
大16开
北京市
2-741
2001
chi
出版文献量(篇)
13340
总下载数(次)
61
总被引数(次)
33730
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导