基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了使木刻版画风格转换结果呈现出更明显的木刻刻痕纹理,同时保持刻痕纹理分布的合理性,提出一种基于神经网络语义分割算法和神经风格转换的木刻版画风格转换算法,该算法按不同区域进行木刻版画的风格转换.首先,使用神经网络分割算法和Labelme图像标注工具分别对内容图像和木刻版画图像进行语义分割.然后将分割结果二值化,形成掩膜图像.将掩膜图像作为引导,与内容图像和木刻版画图像一起输入具有空间引导通道的神经风格转换网络进行分区域风格转换.在PyTorch深度学习框架下,使用该算法对大量人物和自然场景图片进行木刻版画风格转换,并与基于迭代优化、快速风格转换和任意风格转换3类神经风格转换算法中各自最具代表性算法的转换结果进行比较.结果表明,所提算法的木刻版画风格转换结果所呈现的木刻刻痕纹理明显,刻痕纹理分布合理,转换结果真实自然,更接近真实的木刻版画.
推荐文章
基于深度学习的中国画风格迁移
深度学习
风格迁移
中国画
VGG19
面向自然图像的年画风格化算法
年画
风格化
颜色配色
风格细节增强
木刻版画创作中线条的运用与表达
木刻版画
线条
创作艺术
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 木刻版画风格转换的深度学习算法
来源期刊 计算机辅助设计与图形学学报 学科 工学
关键词 木刻版画 神经风格转换 图像语义分割 空间引导通道
年,卷(期) 2020,(11) 所属期刊栏目 图像与视觉
研究方向 页码范围 1804-1812
页数 9页 分类号 TP391.41
字数 语种 中文
DOI 10.3724/SP.J.1089.2020.18148
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 徐丹 90 938 14.0 28.0
2 李应涛 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (4)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(4)
  • 参考文献(2)
  • 二级参考文献(2)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(2)
  • 参考文献(0)
  • 二级参考文献(2)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
木刻版画
神经风格转换
图像语义分割
空间引导通道
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机辅助设计与图形学学报
月刊
1003-9775
11-2925/TP
大16开
北京2704信箱
82-456
1989
chi
出版文献量(篇)
6095
总下载数(次)
15
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导