作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
气象数据的数据量通常较大,传统长短时记忆(LSTM)神经网络针对气象数据人为调参十分困难,为了解决这个问题,提出了一种改进PSO-LSTM模型.其通过使用非线性变化惯性权重和学习因子的粒子群算法(PSO)对LSTM神经网络的相关参数进行优化,去除人为调参因素.实验使用两个不同气象站点的气象数据集,结果表明,与竞争预测模型相比,改进PSO-LSTM模型具有更高的预测精度.
推荐文章
基于LASSO和PSO-LSTM的综合能源系统负荷预测
综合能源
负荷预测
LSTM神经网络
LASSO
基于PSO-LSTM的垂直湖泊剖面溶解氧质量浓度预测
溶解氧
PSO-LSTM
多模型对比
机器学习
基于改进PSO-BP神经网络的回弹预测研究
V形自由折弯
回弹
BP神经网络
改进粒子群算法
全局搜索能力
收敛精度
泛化能力
基于LSTM循环神经网络的电池SOC预测方法
锂离子电池
荷电状态(SOC)
电动汽车
长短期记忆(LSTM)
循环神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进PSO-LSTM神经网络的气温预测
来源期刊 现代信息科技 学科 工学
关键词 长短时记忆神经网络 粒子群算法 气温预测
年,卷(期) 2020,(4) 所属期刊栏目 计算机技术
研究方向 页码范围 110-112
页数 3页 分类号 TP183
字数 2870字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨孟达 成都信息工程大学软件工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (29)
共引文献  (15)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(6)
  • 参考文献(0)
  • 二级参考文献(6)
2017(3)
  • 参考文献(1)
  • 二级参考文献(2)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
长短时记忆神经网络
粒子群算法
气温预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代信息科技
半月刊
2096-4706
44-1736/TN
16开
广东省广州市白云区机场路1718号8A09
46-250
2017
chi
出版文献量(篇)
4784
总下载数(次)
45
总被引数(次)
3182
论文1v1指导