钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
工业技术期刊
\
自动化技术与计算机技术期刊
\
计算机科学与探索期刊
\
感知相似的图像分类对抗样本生成模型
感知相似的图像分类对抗样本生成模型
作者:
李俊杰
王茜
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
对抗攻击
生成对抗网络(GAN)
感知内容损失
对抗样本
深度神经网络(DNN)
摘要:
现有基于生成器的对抗样本生成模型相比基于迭代修改原图的算法可有效降低对抗样本的构造时间,但其生成的对抗样本与原图在感知上具有明显差异,人眼易察觉.该模型旨在增加对抗样本与原图在人眼观察感知上的相似性,并保证攻击成功率.模型将对抗样本生成的过程视为对原图进行图像增强的操作,引入生成对抗网络,并改进感知损失函数以增加对抗样本与原图在内容与特征空间上的相似性,采用多分类器损失函数优化训练从而提高攻击效率.实验结果表明,相比其他基于生成器的对抗样本生成模型,该模型有效提高了对抗样本与原图的结构相似性指标,并且攻击成功率未出现下降.说明在保持攻击成功率的同时,该模型可有效提高人眼观察下对抗样本与原图的相似性.
暂无资源
收藏
引用
分享
推荐文章
分类重构堆栈生成对抗网络的文本生成图像模型
文本生成图像
堆栈生成对抗网络
分类
重构
跨模态学习
对抗样本生成及攻防技术研究
对抗样本
机器学习
深度学习
基于视觉颜色感知——光学相似的图像去雾方法
视觉颜色感知
图像相似性
图像去雾
加入目标指导的强化对抗文本生成方法研究
文本生成
强化学习
生成对抗网络
目标指导
内容分析
文献信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
感知相似的图像分类对抗样本生成模型
来源期刊
计算机科学与探索
学科
工学
关键词
对抗攻击
生成对抗网络(GAN)
感知内容损失
对抗样本
深度神经网络(DNN)
年,卷(期)
2020,(11)
所属期刊栏目
图形图像
研究方向
页码范围
1930-1942
页数
13页
分类号
TP181
字数
语种
中文
DOI
10.3778/j.issn.1673-9418.1912062
五维指标
作者信息
序号
姓名
单位
发文数
被引次数
H指数
G指数
1
王茜
68
682
14.0
23.0
2
李俊杰
5
10
1.0
3.0
传播情况
被引次数趋势
(/次)
(/年)
引文网络
引文网络
二级参考文献
(0)
共引文献
(0)
参考文献
(3)
节点文献
引证文献
(0)
同被引文献
(0)
二级引证文献
(0)
2012(2)
参考文献(2)
二级参考文献(0)
2017(1)
参考文献(1)
二级参考文献(0)
2020(0)
参考文献(0)
二级参考文献(0)
引证文献(0)
二级引证文献(0)
研究主题发展历程
节点文献
对抗攻击
生成对抗网络(GAN)
感知内容损失
对抗样本
深度神经网络(DNN)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学与探索
主办单位:
华北计算技术研究所
出版周期:
月刊
ISSN:
1673-9418
CN:
11-5602/TP
开本:
大16开
出版地:
北京市海淀区北四环中路211号北京619信箱26分箱
邮发代号:
82-560
创刊时间:
2007
语种:
chi
出版文献量(篇)
2215
总下载数(次)
4
总被引数(次)
10748
期刊文献
相关文献
1.
分类重构堆栈生成对抗网络的文本生成图像模型
2.
对抗样本生成及攻防技术研究
3.
基于视觉颜色感知——光学相似的图像去雾方法
4.
加入目标指导的强化对抗文本生成方法研究
5.
基于生成对抗网络的恶意软件对抗样本生成综述
6.
分类重构堆栈生成对抗网络的文本生成图像模型
7.
不均衡数据集文本分类中少数类样本生成方法研究
8.
基于GAN的对抗样本生成研究
9.
基于CNN和DLTL的步态虚拟样本生成方法
10.
攻击分类器的对抗样本生成技术的现状分析
11.
基于特征重标定生成对抗网络的图像分类算法
12.
基于样本分析的图像识别分类模型
13.
基于分位数回归CGAN的虚拟样本生成方法及其过程建模应用
14.
DroidGAN:基于DCGAN的Android对抗样本生成框架
15.
基于AE-WGAN的定向对抗样本生成及利用
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
一般工业技术
交通运输
军事科技
冶金工业
动力工程
化学工业
原子能技术
大学学报
建筑科学
无线电电子学与电信技术
机械与仪表工业
水利工程
环境科学与安全科学
电工技术
石油与天然气工业
矿业工程
自动化技术与计算机技术
航空航天
轻工业与手工业
金属学与金属工艺
计算机科学与探索2022
计算机科学与探索2021
计算机科学与探索2020
计算机科学与探索2019
计算机科学与探索2018
计算机科学与探索2017
计算机科学与探索2016
计算机科学与探索2015
计算机科学与探索2014
计算机科学与探索2013
计算机科学与探索2012
计算机科学与探索2011
计算机科学与探索2010
计算机科学与探索2009
计算机科学与探索2008
计算机科学与探索2007
计算机科学与探索2020年第9期
计算机科学与探索2020年第8期
计算机科学与探索2020年第7期
计算机科学与探索2020年第6期
计算机科学与探索2020年第5期
计算机科学与探索2020年第4期
计算机科学与探索2020年第3期
计算机科学与探索2020年第2期
计算机科学与探索2020年第12期
计算机科学与探索2020年第11期
计算机科学与探索2020年第10期
计算机科学与探索2020年第1期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号