基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
电子器件容器生产是一种对安全性、高效性、完整性要求极高的过程,是各大企业必须要关注的问题.但是在实际的生产封装过程中,容器上的污渍、容器内的异物,外观的异常不可避免地出现,这些问题亟待解决.目前解决这些问题主要的检测方法还是人工检测和传统的机器视觉的方式,人工检测方式的缺点在于准确率高而效率低,传统机器视觉检测方式是效率高而准确率低,都难以满足高速自动化生产线要求.因此,本文提出一种基于Cascade R-CNN的电子器件容器质检方法,针对实际过程中的容器数据定向改进网络,加入Focal Loss检测难以区分的样本,使用可变形卷积更高效地提取特征,以多尺度训练方式训练强鲁棒性的模型,用于电子器件容器的多类别检测问题.实验结果表明提出的改进的基于Cascade R-CNN的电子器件容器质检模型具有高准确率和强鲁棒性.
推荐文章
一种改进的Faster R-CNN对小尺度车辆检测研究
FasterR-CNN
小尺度车辆检测
全卷积网络
区域建议网络
锚选择
平衡锚数量
一种基于Faster R-CNN模型的虹膜检测改进方法
虹膜检测
Faster R-CNN
虹膜定位
目标检测
基于Faster R-CNN的显著性目标检测方法
视觉显著性
目标检测
元胞自动机
超像素分割
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于Cascade R-CNN的电子器件容器质检方法
来源期刊 计算机与现代化 学科 工学
关键词 目标检测 机器视觉 卷积神经网络 定向检测 可变形卷积网络 多尺度
年,卷(期) 2020,(11) 所属期刊栏目 人工智能
研究方向 页码范围 33-38,46
页数 7页 分类号 TP18
字数 语种 中文
DOI 10.3969/j.issn.1006-2475.2020.11.006
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (4)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(3)
  • 参考文献(0)
  • 二级参考文献(3)
2018(3)
  • 参考文献(1)
  • 二级参考文献(2)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
目标检测
机器视觉
卷积神经网络
定向检测
可变形卷积网络
多尺度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与现代化
月刊
1006-2475
36-1137/TP
大16开
南昌市井冈山大道1416号
44-121
1985
chi
出版文献量(篇)
9036
总下载数(次)
25
论文1v1指导