基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
复杂场景中的运动目标检测是计算机视觉领域的重要问题,其检测准确度仍然是一大挑战.本文提出并设计了一种用于复杂场景中运动目标检测的深度帧差卷积神经网络(Deep Difference Convolutional Neural Network,DFD-CNN).DFDCNN由DifferenceNet和AppearanceNet组成,不需要后处理就可以预测分割前景像素.DifferenceNet具有孪生Encoder-Decoder结构,用于学习两个连续帧之间的变化,从输入(t帧和t+1帧)中获取时序信息;AppearanceNet用于从输入(t帧)中提取空间信息,并与时序信息融合;同时,通过多尺度特征图融合和逐步上采样来保留多尺度空间信息,以提高网络对小目标的敏感性.在公开标准数据集CDnet2014和I2R上的实验结果表明:DFDCNN不仅在动态背景、光照变化和阴影存在的复杂场景中具有更好的检测性能,而且在小目标存在的场景中也具有较好的检测效果.
推荐文章
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
基于卷积神经网络的行人目标检测系统设计
卷积神经网络
行人目标
检测系统
CNN框架
目标传感器
训练文件
访问接口
复用加速结构
基于深度卷积神经网络的人眼检测
人眼检测
深度学习
卷积神经网络
网络优化
损失优化
泛化能力
基于深度时空卷积神经网络的人群异常行为检测和定位
人群异常行为检测
深度时空卷积神经网络
迁移学习
数据扩充
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度帧差卷积神经网络的运动目标检测方法研究
来源期刊 电子学报 学科 工学
关键词 运动目标检测 复杂场景 深度帧差卷积神经网络 时序信息 空间信息 多尺度特征图融合
年,卷(期) 2020,(12) 所属期刊栏目 学术论文
研究方向 页码范围 2384-2393
页数 10页 分类号 TP183
字数 语种 中文
DOI 10.3969/j.issn.0372-2112.2020.12.014
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(5)
  • 参考文献(5)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
运动目标检测
复杂场景
深度帧差卷积神经网络
时序信息
空间信息
多尺度特征图融合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子学报
月刊
0372-2112
11-2087/TN
大16开
北京165信箱
2-891
1962
chi
出版文献量(篇)
11181
总下载数(次)
11
总被引数(次)
206555
论文1v1指导