基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着大型图像集的出现以及计算机硬件尤其是GPU的快速发展,在有限计算资源的嵌入式设备上部署卷积神经网络(CNN)模型成为具有挑战性的问题.电力设备过热故障可以通过采集的红外热成像进行识别.由于红外辐射在空气中传播衰落,红外测温结果低于实际温度值.本文提出一种基于嵌入式设备的高效卷积神经网络用于电力设备热故障检测,将SSD算法中的骨干网络替换为MobileNet,同时Batch Normalization与前一卷积层合并,以减少模型参数、提升推理速度、使之能够在轻量级计算平台上运行.针对红外辐射在空气中传播损失的问题,提出一种基于BP神经网络的红外测温修正单元.基于上述创新设计了一种电力设备热故障检测系统,实验以及现场应用表明,该方法具有较高的准确性以及推理速度.
推荐文章
基于红外图像分析的电力设备热故障检测技术研究
输变电设备
在线监测
状态诊断
热故障检测
基于图像分析的电力设备故障检测技术研究
红外图像
电力设备
热故障
拉普拉斯锐化算法
基于深度学习的电力设备智能运行方式的研究
电力市场
深度学习
BP神经网络算法模型
随机矩阵理论模型
决策树分类算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于嵌入式深度学习的电力设备红外热成像故障识别
来源期刊 计算机系统应用 学科
关键词 深度学习 红外热成像 轻量级 故障检测 电力设备
年,卷(期) 2020,(6) 所属期刊栏目 系统建设
研究方向 页码范围 97-103
页数 7页 分类号
字数 4723字 语种 中文
DOI 10.15888/j.cnki.csa.007422
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王彦博 6 18 2.0 4.0
2 陈培峰 3 8 2.0 2.0
3 徐亮 北京科技大学计算机与通信工程学院 3 1 1.0 1.0
4 张合宝 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (51)
共引文献  (55)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1979(1)
  • 参考文献(1)
  • 二级参考文献(0)
1981(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(5)
  • 参考文献(0)
  • 二级参考文献(5)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(5)
  • 参考文献(1)
  • 二级参考文献(4)
2005(7)
  • 参考文献(0)
  • 二级参考文献(7)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
红外热成像
轻量级
故障检测
电力设备
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
总被引数(次)
57078
论文1v1指导