基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目前在实体关系抽取任务中,神经网络模型发挥着重要的作用,利用卷积神经网络可以自动提取特征,但是在卷积神经网络中利用固定窗口大小的卷积核来提取句子中词的上下文语义信息受到限制.因此,提出一种新的采用自注意力和卷积神经网络融合的关系抽取模型.利用原始的词向量通过自注意力机制计算得到序列中词之间的相互关系,使得输入的词向量表达出更加丰富的语义信息,从而弥补卷积神经网络自动提取特征的不足.在SemEval-2010 Task 8数据集上的实验结果表明,加入自注意力机制以后,本文模型有利于提升实体关系抽取效果.
推荐文章
融合句法依存树注意力的关系抽取研究
关系抽取
句法依存
注意力
融合
基于GRU和注意力机制的远程监督关系抽取
深度学习
远程监督
门控循环单元
注意力机制
基于注意力机制的LSTM的语义关系抽取
文本信息
语义关系
关系抽取
LSTM
注意力机制
基于动态掩蔽注意力机制的事件抽取
事件抽取
注意力机制
多事件抽取
动态掩蔽注意力
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 采用自注意力机制和CNN融合的实体关系抽取
来源期刊 计算机工程与科学 学科 工学
关键词 实体关系抽取 自注意力机制 卷积神经网络 词向量 上下文语义
年,卷(期) 2020,(11) 所属期刊栏目 人工智能与数据挖掘
研究方向 页码范围 2059-2066
页数 8页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1007-130X.2020.11.019
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (113)
共引文献  (107)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1954(1)
  • 参考文献(0)
  • 二级参考文献(1)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(14)
  • 参考文献(0)
  • 二级参考文献(14)
2010(7)
  • 参考文献(0)
  • 二级参考文献(7)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(7)
  • 参考文献(0)
  • 二级参考文献(7)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(9)
  • 参考文献(0)
  • 二级参考文献(9)
2015(10)
  • 参考文献(0)
  • 二级参考文献(10)
2016(16)
  • 参考文献(1)
  • 二级参考文献(15)
2017(14)
  • 参考文献(4)
  • 二级参考文献(10)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
实体关系抽取
自注意力机制
卷积神经网络
词向量
上下文语义
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与科学
月刊
1007-130X
43-1258/TP
大16开
湖南省长沙市开福区德雅路109号国防科技大学计算机学院
42-153
1973
chi
出版文献量(篇)
8622
总下载数(次)
11
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导