基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对开采沉陷量与多影响因素复杂非线性关系问题,提出了基于粒子群算法优化BP神经网络的Adaboost强预测模型(Adaboost-PSO-BP模型).预测结果表明,与BP模型、Adaboost-BP模型和PSO-BP模型相比,Adaboost-PSO-BP模型提高了预测精度,平均相对误差值优化到4.26%;该模型融合了Adaboost算法侧重预测误差大的样本和粒子群算法优化神经网络权值及阈值的特点,实现了强预测器"优中选优"的目的,在开采沉陷预测中具有可行性.
推荐文章
基于PSO_SVM_AdaBoost的煤层底板突水预测研究
煤层底板突水预测
主成分分析
粒子群优化算法
支持向量机
AdaBoost算法
岩盐水溶开采沉陷新概率积分三维预测模型研究
岩盐溶腔
开采沉陷
新概率积分
预测模型
基于PSO的BP神经网络-Markov船舶交通流量预测模型
船舶交通流量预测
BP神经网络
马尔科夫模型(Markov模型)
粒子群优化(PSO)
基于GIS的矿山开采沉陷预测电算化研究
地表沉陷损害
预计程序模型
GIS
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Adaboost-PSO-BP模型的开采沉陷预测研究
来源期刊 煤炭工程 学科 工学
关键词 开采沉陷预测 BP神经网络 粒子群算法 自适应增强算法
年,卷(期) 2020,(12) 所属期刊栏目 研究探讨
研究方向 页码范围 141-144
页数 4页 分类号 TD325
字数 语种 中文
DOI 10.11799/ce202012030
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张沛 16 275 8.0 16.0
2 原喜屯 6 18 3.0 4.0
3 邢垒 4 5 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (71)
共引文献  (64)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1995(2)
  • 参考文献(1)
  • 二级参考文献(1)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(5)
  • 参考文献(1)
  • 二级参考文献(4)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(7)
  • 参考文献(0)
  • 二级参考文献(7)
2004(5)
  • 参考文献(2)
  • 二级参考文献(3)
2005(3)
  • 参考文献(2)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(7)
  • 参考文献(0)
  • 二级参考文献(7)
2016(5)
  • 参考文献(0)
  • 二级参考文献(5)
2017(4)
  • 参考文献(0)
  • 二级参考文献(4)
2018(4)
  • 参考文献(1)
  • 二级参考文献(3)
2019(3)
  • 参考文献(2)
  • 二级参考文献(1)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
开采沉陷预测
BP神经网络
粒子群算法
自适应增强算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
煤炭工程
月刊
1671-0959
11-4658/TD
大16开
北京市德外安德路67号
80-130
1954
chi
出版文献量(篇)
11020
总下载数(次)
16
总被引数(次)
55785
论文1v1指导