基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统的t分布随机近邻嵌入(t-SNE)算法只能处理单一属型数据,不能很好地处理混合属性数据的问题,提出一种扩展的t-SNE降维可视化算法E-t-SNE,用于处理混合属性数据.该方法引入信息熵概念来构建分类属性数据的距离矩阵,采用分类属性数据距离与数值属性数据欧式距离相结合的方式构建混合属性数据距离矩阵,将新的距离矩阵输入t-SNE算法对数据进行降维并在二维空间可视化展示.此外,为验证算法有效性,采用k近邻(kNN)算法对混合数据降维后的效果进行评价.通过在UCI数据集上的实验表明,该方法在处理混合属性数据方面,不仅具有较好的可视化能力,而且能有效地对不同类别的数据进行降维分簇,提升后续分类器的分类准确率.
推荐文章
基于深度特征与非线性降维的图像数据集可视化方法
数据可视化
深度学习
非线性降维
卷积神经网络
面向数据集的ST-SNE算法高维数据降维研究
数据降维
二阶邻近距离
ST-SNE
基于信息熵的混合属性数据谱聚类算法
混合属性数据
谱聚类
高斯核函数
影响因子
多维数据集中高维数据可视化算法研究
多维
数据集
可视化
平行坐标系
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于E-t-SNE的混合属性数据降维可视化方法
来源期刊 计算机工程与应用 学科 工学
关键词 t-SNE算法 混合属性数据 降维 可视化
年,卷(期) 2020,(6) 所属期刊栏目 理论与研发
研究方向 页码范围 66-72
页数 7页 分类号 TP391
字数 7489字 语种 中文
DOI 10.3778/j.issn.1002-8331.1903-0330
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (57)
共引文献  (9)
参考文献  (17)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(5)
  • 参考文献(2)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(7)
  • 参考文献(1)
  • 二级参考文献(6)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(8)
  • 参考文献(2)
  • 二级参考文献(6)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(7)
  • 参考文献(2)
  • 二级参考文献(5)
2017(5)
  • 参考文献(2)
  • 二级参考文献(3)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
t-SNE算法
混合属性数据
降维
可视化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导